Skip to main content
Log in

An algorithm for convex constrained minimax optimization based on duality

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

We consider the problem of finding the minimum value of the upper hull ofn convex functionals on a Hilbert space, subject to convex constraints. The problem is reformulated as that of finding the minimum of the “worst” convex combination of these functionals, which eventually yields a saddle-point problem. We propose a new algorithm to solve this problem that simplifies the task of updating the dual variables. Simultaneously, the constraints can be dualized by introducing other dual multipliers. Convergence proofs are given and a concrete example shows the practical and computational advantages of the proposed algorithm and approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Arrow and L. Hurwicz, Decentralization and Computation in Resource Allocation, in:Essays in Economics and Econometrics, ed. by R. W. Pfouts, 34–104, University of North Carolina Press, Rayleigh, N.C., 1960.

    Google Scholar 

  2. A. Auslender,Optimisation, Méthodes Numériques, Masson, Paris, 1976.

    Google Scholar 

  3. A. Bensoussan, J. L. Lions, and R. Temam, Sur les Méthodes de Décomposition, de Décentralisation et Applications, inMéthodes Numériques d'Analyse de Systèmes, Vol. 2, 5–190, Cahier IRIA No 11, Le Chesnay, France, 1972.

  4. P. Bernhard and G. Bellec, On the Evaluation of Worst-Case Design with an Application to the Quadratic Synthesis Technique,Proceedings of the IFAC Symposium on Sensitivity, Adaptivity and Optimality, Ischia, Italy, 1973.

  5. P. Bernhard and G. Cohen, Optimisation du Compromis Economique Investissement-Exploitation,Report No. E/63, Centre d'Automatique-Informatique ENSMP, Fontainebleau, France, 1979.

    Google Scholar 

  6. D. P. Bertsekas, Approximation Procedures Based on the Method of Multipliers,J. Optim. Theory and Applic. 487–510 (1977).

  7. J. Céa,Optimisation: Théorie et Algorithmes, Dunod, Paris, 1971.

    Google Scholar 

  8. C. Charalambous and A. R. Conn, An efficient method to solve the minimax problem directly,SIAM J. Num. Anal. 162–187 (1978).

  9. G. Cohen, Optimization by decomposition and coordination: A unified approach,IEEE Transactions on Automatic Control 23, 222–232 (1978).

    Google Scholar 

  10. G. Cohen, The auxiliary problem principle and the decomposition of optimization problems,J. Optim. Theory and Appl. 32, 277–305 (1979).

    Google Scholar 

  11. V. M. Danskin,The Theory of Max-Min, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  12. S. R. K. Dutta and M. Vidyasagar, New algorithms for constrained minimax optimization,Mathematical Programming, 140–155, 1977.

  13. V. F. Dem'yanov and V. N. Malozemov,Introduction to Minimax, Wiley, New York, 1974.

    Google Scholar 

  14. I. Ekeland and R. Temam,Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976.

    Google Scholar 

  15. P. Hagedorn and J. V. Breakwell, A differential game with two pursuers and one evader,J. Optim. Theory and Appl. 18, 15–29 (1976).

    Google Scholar 

  16. L. S. Lasdon and J. D. Schoeffer, A multilevel technique for optimization,Proceedings of the Joint Automatic Control Conference, Troy, New York, 1965.

  17. C. Lemaréchal, Nonsmooth Optimization and descent methods, RR-78-4,International Institute for Applied Systems Analysis, Austria, 1978.

  18. C. Lemaréchal, An extension of Davidon methods to nondifferentiable problems, inMathematical Study 3, Nondifferentiable Optimization ed. by M. L. Balinski and P. Wolfe, 95–109, North Holland, Amsterdam, 1975.

    Google Scholar 

  19. D. G. Luenberger,Optimization by Vector Space Methods, Wiley, New York, 1969.

    Google Scholar 

  20. K. Madsen and H. Schjaer-Jacobsen, Linearly constrained minimax optimization,Mathematical Programming 14, 208–223 (1978).

    Google Scholar 

  21. D. D. Morrison, Optimization by least-squares,SIAM J. Num. Anal. 5:1, 83–88 (1968).

    Google Scholar 

  22. J. Medanic and M. Andjelic, Minimax solution of the multiple target problem,IEEE Transactions on Automatic Control 17 (1972).

  23. M. Mintz and S. Hulling, Optimal evasion strategies against multiple missiles based on differential game theory,Proceedings of the IEEE Conference on Decision and Control, New Orleans, 1977.

  24. M. Staroswiecki and Z. Bubnicki, Optimal planning of production by means of a particular cooperative equilibrium,Proceedings of the IFAC Congress, Helsinki, Finland 1978.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Bensoussan

This research has been supported by the Centre National de la Recherche Scientifique (CNRS-France) under Contract No. ATP-2340.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, G. An algorithm for convex constrained minimax optimization based on duality. Appl Math Optim 7, 347–372 (1981). https://doi.org/10.1007/BF01442126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01442126

Keywords

Navigation