Skip to main content
Log in

Developing turbulent flow in concentric annuli: An analytical and experimental study

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

In this paper, the problem of the developing turbulent flow in concentric annuli is studied from an integral view-point based on a modified model ofReichardt's expression for the eddy diffusivity of momentum. The analytical results are compared with the experimental data based on the measurement of local flow conditions for air flow through four concentric annuli for a Reynolds number range of about 20,000 to 110,000. In the analysis, it was assumed that the flow is turbulent everywhere and in the experimental work, the flow was tripped at the starting position of the boundary layers.

Zusammenfassung

Mit Hilfe einer Integralmethode und unter Benutzung des Ansatzes vonReichardt für die Impulsausbreitung wurde die turbulente Einlaufströmung im konzentrischen Ringspalt untersucht. Diese Rechnungen wurden mit experimentellen Ergebnissen an einer Luftströmung in vier konzentrischen Ringspalten im Bereich der Reynolds-Zahlen von 20 000 bis 110 000 verglichen. Bei den Rechnungen wurde angenommen, daß die Strömung überall turbulent ist, im Experiment wurden Stolperdrähte am Anfang der Grenzschichten vorgesehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A + :

dimensionless function defined by Eq. (17)

B + :

dimensionless function defined by Eq. (17)

C :

constant

f :

friction factor

k :

mixing length constance

n :

constant

p :

pressure

r :

radial distant

r + :

dimensionless radial distance parameter,r·u */v

r +1 + :

dimensionless radial distance parameter, r1· u *2 /v

R :

radial distance defined by Eq. (3)

R + :

dimensionless radial distance parameter, u*/v

s :

dimensionless parameter defined by Eq. (12)

u :

velocity inx direction

ū :

mean velocity inx direction

u′:

fluctuating velocity component inx direction

u + :

dimensionless velocity parameter,u/u *

u * :

friction velocity, (τ0/ϱ)0.5

x :

distance in flow direction from the entrance

y :

distance from wall

y + :

dimensionless distance parameter,y ·u */v

De :

equivalent diameter of annulus, 2 (r 2r 1)

De+ :

dimensionless equivalent diameter,De·u */v

Re :

Reynolds number

α :

radius ratio, (r 2/r 1)

δ:

thickness of boundary layer

δ *j :

dimensionless parameter,\({{\delta _j^ + } \mathord{\left/ {\vphantom {{\delta _j^ + } {\left| {r_m^ + - r_j^ + } \right|}}} \right. \kern-\nulldelimiterspace} {\left| {r_m^ + - r_j^ + } \right|}}\)

δ *j :

dimensionless boundary layer thickness parameter,δ j·u *j /v

δ 1/++ :

dimensionless boundary layer thickness parameter, δ1·u *2 /v

ε :

eddy diffusivity

η :

dimensionless parameter defined by Eq. (12)

ν :

kinematic viscosity

ϱ :

density

τ :

shear stress

ϕ :

function

1:

inner wall or inner wall region of annulus

2:

outer wall or outer wall region of annulus

b:

bulk

d:

fully developed

e:

entrance

j:

refers region 1 or 2

m:

maximum

M:

momentum

1:

value at the edge of the laminar sublayer

0:

wall

x:

local

δ :

outside boundary-layer

max:

maximum

Reference

  1. Lundberg, R. E., W. C.Reynolds and W. M.Kays: NASA TN D-1972, Washington, D. C. Aug. (1963).

  2. Rothfus, R. R., C. C. Monrad andV. E. Senecal: Velocity Distribution and Fluid Friction in Smooth Concentric Annuli. Ind. and Eng. Chem., 42-2 (1950) 2511.

    Google Scholar 

  3. Barrow, H.: Fluid Flow and Heat Transfer in Annulus with Heated Core Tube. Proceeding Inst. Mech. Eng.196 (1955) 1113.

    Google Scholar 

  4. Brighton, J. A., andJ. B. Jones: Fully Developed Turbulent Flow in Annuli, Jour, of Basic. Eng., Trans. ASME, Sec. D86 (1964) 835–844.

    Google Scholar 

  5. Levy, S.: Turbulent Flow in an Annulus, Jour. of Heat Transfer, Trans. ASME 89, Sec. C (1967) 25–31.

    Google Scholar 

  6. Lee, Y., andH. Barrow: Turbulent Flow and Heat Transfer in Concentric and Eccentric Annuli. Proc. I. Mech. Engr. 178 (1964) 1.

    Google Scholar 

  7. Quarmby, A.: An Experimental Study of Turbulent Flow Through Concentric Annuli. Int. Jour. Mech. Sci.9 (1967) 205–221.

    Google Scholar 

  8. Rothfus, R. R., C. C. Monrad, K. G. Sikch andW. J. Keideger: Isuthermal Skin Friction in Flow through Annular Sections. Inc. Eng. Chem.47 (1955) 913.

    Google Scholar 

  9. Olson, R. M., andE. M. Sparrow: Measurements of Turbulent Flow Development in Tube and Annuli with Square or Rounded Entrances. A. I. Ch. E. Jour. 9 (1963) 766.

    Google Scholar 

  10. Okiishi, T. H., andG. K. Serovy: An Experimental Study of the Turbulent Flow Boundary Layer Development in Smooth Annuli. Jour. of Basic Eng.89 (1967) 823–836.

    Google Scholar 

  11. Sridhar, K., A. A. Micol andA. V. A. Padmanabha: Settling Length for Turbulent Flow of Air in Smooth Annuli with Square-Edged or Bellmouth Entrances. Jour. of App. Mech. Trans. ASME37 (1970) 25–28.

    Google Scholar 

  12. Wilson, N. W., and J. O.Medwell: An Analysis of the Developing Turbulent Hydrodynamic and Therm Boundary Layers in an Internally Heated Annulus. ASME paper 70-HT-9 (1970).

  13. Barrow, H., Y. Lee andA. Roberts: The Similarity Hypothesis Applied to Turbulent Flow in an Annulus, Int. Jour. Heat Mass Transfer8 (1965) 1499.

    Google Scholar 

  14. Reichardt, H.: Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen, Zeitschrift für angewandte Mathematik und Mechanik 31 (1951) 208–219.

    Google Scholar 

  15. Kays, W. M.: Convective Heat and Mass Transfer, 71. McGraw-Hill (1966).

  16. Roberts, A.: A Comment on the Turbulent Flow Velocity Profile in a Concentric Annulus. Int. J. Heat Mass Transfer10 (1967) 709–712.

    Google Scholar 

  17. Deissler, R. G.: Turbulent Heat Transfer and Friction in the Entrance Regions of Smooth Passages. Trans. ASME 88 (1955) 1221–33.

    Google Scholar 

  18. Laufer, J.: The Structure of Turbulence in Fully Developed Pipe Flow. N. A. C. A., T. N. 2954 (1953).

  19. Young, A. D., and J. N.Maas: The Behaviour of a Pitot Tube in a Transverse Pressure Gradient. A. R. C., R & M 1770 (1937).

  20. Kays, W. M., andE. Y. Leung: Heat Transfer in Annular Passages; Hydrodynamically Developed Turbulent Flow with Arbitrarily Prescribed Heat Flux. Int. Jour. Heat Mass Transfer 6 (1963) 537–557.

    Google Scholar 

  21. Kjellstrom, B., andS. Hedberg: On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli, AE-243, Aktiebolaget Atomenergi, Stockholm, Sweden (1966).

    Google Scholar 

  22. Schliching, H.: Boundary-Layer Theory,130, 6th Ed., McGraw-Hill (1968).

  23. Lana, I. G. D., andS. Z. Christiansen: Air Flow in a Tube with a Diverging Inlet: I. Development of the Turbulent Velocity Profile, The Canadian Jour. of Chem. Eng. 45 (1967) 275–279.

    Google Scholar 

  24. Barbine, A. R., andJ. B. Jone: Turbulent Flow in the Inlet Region of a Smooth Pipe. Jour. of Basic Eng., Trans. ASME 85 (1963) 29–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Park, S.D. Developing turbulent flow in concentric annuli: An analytical and experimental study. Wärme- und Stoffübertragung 4, 156–166 (1971). https://doi.org/10.1007/BF01443674

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01443674

Keywords

Navigation