Skip to main content
Log in

Analysis of the contribution of skeletal vibrations to the heat capacity of linear macromolecules in the solid state

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Automatic computer programs are developed to calculate one- two-, and three-dimensional Debye functions. Prior tables of these functions are critically reviewed. Also, strategies are derived to calculate Debye temperatures from heat capacities. Both, simple three-dimensional Debye analyses and Tarasov analyses were carried out on 35 linear macromolecules. The experimental heat capacities for these analyses were collected in the ATHAS data bank. It is shown that the skeletal heat capacity of linear macromolecules is often best represented by only two vibrations per chain atom. For most of the all-carbon chain macromolecules the intramolecular skeletal heat capacity can be given by Cvs=D1[520 (28/MW)1/2] whereMW is the molecular mass andD 1 represents the one-dimensional Debye function. Polyoxides show a higher intramolecular theta temperature, but a lower intermolecular theta temperature. Double bonds and phenylene groups in the chain increase the intramolecular theta temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Müller, F. H., H. Martin, Kolloid Z.172, 97 (1960).

    Article  Google Scholar 

  2. O'Neill, M. J., Anal. Chem.36, 1238 (1964);38, 1331 (1966).

    Article  Google Scholar 

  3. Gaur, U., A. Mehta, B. Wunderlich, J. Thermal Anal.13, 71 (1978).

    Article  CAS  Google Scholar 

  4. Wunderlich, B., H. Baur, Adv. Polymer Sci.7, 151 (1970).

    Article  CAS  Google Scholar 

  5. Gaur, U., B. Wunderlich and several coworkers, J. Phys. Chem. Ref. Data, 1981–1982 a series of 9 publications.

  6. Einstein, A., Ann. Physik22, 180, 800 (1907).

    Google Scholar 

  7. See for example Blackman, M. in: “Handbuch der Physik”7, 325 (1955) Springer Berlin-Göttingen-Heidelberg (S. Flügge ed.).

    Google Scholar 

  8. Debye, P., Ann. Physik39, 789 (1912).

    Article  CAS  Google Scholar 

  9. Tarasov, V. V., Zh. Fiz, Khim.24, 111 (1950), see also Zh. Fiz. Khim.39, 2077 (1965).

    CAS  Google Scholar 

  10. Perepechko, I. I., “Low-Temperature Properties of Polymers”, Pergamon Press, Oxford (1980).

    Google Scholar 

  11. Hilsenrath, J., G. G. Ziegler, “Tables of Einstein Functions”. Natl. Bur. Std. Monograph49 (1962).

  12. Beatty, J. A., J. Math. Phys. (MIT)6, 1 (1926).

    Article  Google Scholar 

  13. Gaur, U., G. Pultz, H. Wiedemeier, B. Wunderlich, J. Thermal Anal, to be published.

  14. Wunderlich, B., J. Chem. Phys.37, 1207 (1962).

    Article  CAS  Google Scholar 

  15. Lau, S.-F., Thesis, Rensselaer Polytechnic Institute, Department of Chemistry, Troy, N. Y. expected completion date 1982, available through microfilm University Microfilms, Ann Arbor, Mich., approximately 1983.

  16. McCracken, D. D., W. S. Dorn, “Numerical Methods and Fortran Programming”, J. Wiley and Sons, New York, London (1964).

    Google Scholar 

  17. Patterson, T. N. L., Math. Comp.22, 847, 877 (1968).

    Article  Google Scholar 

  18. Clenshaw, C. W., A. R. Curtis, Num. Math.2, 197 (1960); Oliver, J., Comp. J.15, 141 (1972).

    Article  Google Scholar 

  19. Numerical Algorithms Group Ltd. NAG Central Office, 7 Banbury Road, Oxford OX2 6NN, United Kingdom; NAG (USA) Inc. 1250 Grace Court, Downer's Grove, Illinois 60515 USA.

  20. Choy, C. L., M. Huq, D. Moody, Phys. Lett.54A, 375 (1975).

    Article  CAS  Google Scholar 

  21. Gaur, U., B. Wunderlich, Macromolecules13, 439 (1980).

    Google Scholar 

  22. Wunderlich, B., “Macromolecular Physics, Vol. 3, Crystal Melting.” Academic Press, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. F. H. Müller.

On leave from the Lumumba Peoples' Friendship University, Moscow, USSR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheban, Y.V., Lau, S.F. & Wunderlich, B. Analysis of the contribution of skeletal vibrations to the heat capacity of linear macromolecules in the solid state. Colloid & Polymer Sci 260, 9–19 (1982). https://doi.org/10.1007/BF01447670

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447670

Key words

Navigation