Skip to main content
Log in

Laminar thermal boundary layer on a continuous accelerated sheet extruded in an ambient fluid

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Exact boundary layer similarity solutions are developed for flow, friction and heat transfer on a continuously accelerated sheet extruded in an ambient fluid of a lower temperature.

Melt-spinning, polymer and glass industries and the cooling of extruded metallic plates are practical applications of this problem.

Results for skin-friction and heat-transfer coefficients are given. Larger acceleration is accompanied by larger skin-friction and heat-transfer coefficients. Rapid cooling of the sheet is accompanied by a larger Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\bar b\) :

sheet width

c :

dimensionless constant

c f :

local skin friction coefficient

F :

dimensionless transformed stream function

G :

dimensionless transformed temperature

\(\bar h_x \) :

local heat transfer coefficient

\(\bar k\) :

fluid thermal conductivity

\(\bar L\) :

length of deformation zone

m :

exponent of surface speed variation

q :

exponent of surface temperature variation

T :

dimensionless temperature

\(\bar T_s \) :

sheet surface temperature

\(\bar T_0 \) :

solidification temperature

\(\bar T_\infty \) :

ambient temperature

\(\bar t\) :

sheet thickness

u :

velocity component along the sheet

u s :

sheet surface velocity

\(\bar u_0 \) :

wind up velocity

v :

velocity component normal to the sheet

x :

dimensionless coordinate along the sheet

y :

dimensionless coordinate normal to the sheet

Nu:

Nusselt number,\(Nu = \bar h_x \bar L/\bar k\)

Pr:

Prandtl number,\(Pr = \bar \mu \bar c_p /\bar k\)

Re:

Reynolds number,\(Re = \bar \mu _0 \bar L/\bar v\)

ɛ:

ɛ=Re−0.5

η:

dimensionless similarity coordinate

\(\bar \mu \) :

dynamic viscosity

\(\bar v\) :

kinematic viscosity

\(\bar \varrho \) :

fluid mass density

\(\bar \varrho _s \) :

sheet mass density

\(\bar \tau _w \) :

wall shear stress

ψ:

dimensionless stream function

References

  1. Abdelhafez, T. A.: Die laminare Umströmung einer kontinuierlich pumpenden Platte, Differenzenverfahren zur Integration der Navier-Stokes-Gleichungen. Dissertation, Fachbereich Maschinentechnik, Universität Essen, BRD, 1982.

    Google Scholar 

  2. Abdelhafez, T. A.: Skin friction and heat transfer on a continuous flat surface moving in a parallel free stream. Int. J. Heat Mass Transfer28 (6), 1234–1237 (1985).

    Google Scholar 

  3. Acrivos, A., Klemp, B.: A moving wall boundary layer with reverse flow. J. Fluid Mech.76 (2) 363–381 (1976).

    Google Scholar 

  4. Chida, K., Katto, Y.: Conjugate heat transfer of continuously moving surfaces. Int. J. Heat Transfer19, 461–470 (1976).

    Google Scholar 

  5. Crane, L. J.: Heat transfer on continuous solid surfaces. Ingenieur-Archiv43, 203–214 (1974).

    Google Scholar 

  6. Goldstein, S.: Concerning some solutions of the boundary layer equations in hydrodynamics. Proc. Cambr. Phil. Soc.26 (1), 1–30 (1930).

    Google Scholar 

  7. Graffin, J. L., Throne, J. L.: On thermal boundary layer growth on continuous moving belts, A.I.Ch. E. Jl.13, 1210–1211 (1967).

    Google Scholar 

  8. Horvay, G.: Temperature distribution in a slab moving from a chamber at one temperature to a chamber at another temperature. J. Heat Transfer83, 391–402 (1961).

    Google Scholar 

  9. Rhodes, C. A., Kaminer, H. Jr.: Laminar thermal boundary layers on continuous solid surfaces. AIAA Journal10 (3), 331–333 (1972).

    Google Scholar 

  10. Sakiadis, B. C.: Boundary-layer behavior on continuous solid surfaces. A.I.Ch.E Jour.7 (1), 26–28 (1969);7 (2), 221–225 (1969).

    Google Scholar 

  11. Tsou, F., Sparrow, E., Goldstein, R.: Flow and heat transfer in the boundary layer on a continuous moving surface. Int. J. Heat Mass Transfer,10, 219–235 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelhafez, T.A. Laminar thermal boundary layer on a continuous accelerated sheet extruded in an ambient fluid. Acta Mechanica 64, 207–213 (1986). https://doi.org/10.1007/BF01450395

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01450395

Keywords

Navigation