Skip to main content
Log in

Dispersal, vicariance, and the Late Cretaceous to early tertiary land mammal biogeography from South America to Australia

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

A review of paleontological, phyletic, geophysical, and climatic evidence leads to a new scenario of land mammal dispersal among South America, Antarctica, and Australia in the Late Cretaceous to early Tertiary epochs. New fossil land vertebrate material has been recovered from all three continents in recent years. As regards Gondwana, the present evidence suggests that monotreme mammals and ratite birds are of Mesozoic origin, based on both geochronological and phyletic grounds. The occurrence of monotremes in the early Paleocene (ca. 62 Ma) faunas of Patagonia and of ratites in late Eocene (ca. 41-37 m.y.) faunas of Seymour Island (Antarctic Peninsula) probably is an artifact of a much older and widespread Gondwana distribution prior to the Late Cretaceous Epoch. Except for South American microbiotheres being australidelphians, marsupial faunas of South America and Australia still are fundamentally disjunct. New material from Seymour Island (Microbiotheriidae) indicates the presence there of a derived taxon that resides in a group that is the sister taxon of most Australian marsupials. There is no compelling evidence that dispersal between Antarctica and Australia was as recent as ca. 41 Ma or later. In fact, the derived marsupial and placental land mammal fauna of Seymour Island shows its greatest affinity with Patagonian forms of Casamayoran age (ca. 51–54 m.y.). This suggests an earlier dispersal of more plesiomorphic marsupials from Patagonia to Australia via Antarctica, and vicariant disjunction subsequently. This is consistent with geophysical evidence that the South Tasman Rise was submerged by 64 Ma and with geological evidence that a shallow water marine barrier was present from then onward. The scenario above is consistent with molecular evidence suggesting that australidelphian bandicoots, dasyurids, and diprotodontians were distinct and present in Australia at least as early as the 63-Ma-old australidelphian microbiotheres and the ancient but not basal australidelphian,Andinodelphys, in the Tiupampa Fauna of Bolivia. Land mammal dispersal to Australia typically has been considered to be at a low level of probability (e.g., by sweepstakes dispersal). This study suggests that the marsupial colonizers of Australia included already recognizable members of the Peramelina, Dasyuromorphia, and Diprotodontia, at least, and entered via a filter route rather than by a sweepstakes dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aplin, K. P., and Archer, M. (1987). Recent advances in marsupial systematics with a new syncretic classification. In:Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. xv-lxii, Surrey Beatty and Sons, Chipping Norton, NSW.

    Google Scholar 

  • Archer, M. (1976). The basicranial region of marsupicarnivores (Marsupialia), inter-relationships of carnivorous marsupials, and affinities of the insectivorous marsupial peramelids.Zool. J. Linn. Soc. 59: 217–322.

    Google Scholar 

  • Archer, M., Godthelp, H., and Hand, S. J. (1993). Early Eocene marsupial from Australia.Kaupia 3: 193–200.

    Google Scholar 

  • Askin, R. A. (1990). Campanian to Paleocene spore and pollen assemblages of Seymour Island, Antarctica.REv. Paleobot. Palynol. 65: 105–133.

    Google Scholar 

  • Askin, R. A. (1992). Late Cretaceous-early Tertiary Antarctic outcrop evidence for past vegetation and climates. The Antarctic Paleoenvironment: A perspective on Global Change.Am. Geophys. Union Antarctic Res. Ser. 56: 61–73.

    Google Scholar 

  • Askin, R. A. (1995). Eocene terrestrial palynology of Seymour Island, Antarctica.VII Int. Symp. Antarctic Earth Sci. Abstr., p. 14, Siena, Italy.

  • Askin, R. A., Elliot, D. H., Stilwell, J. D., and Zinsmeister, W. J. (1991). Stratigraphy and paleontology of Campanian and Eocene sediments, Cockburn Island, Antarctic Peninsula.J. South Am. Earth Sci. 4: 99–117.

    Google Scholar 

  • Barker, P. F., and Burrell, J. (1982). The influence upon Southern Ocean circulation, sedimentation, and climate of the opening of Drake Passage. In:Antarctic Geoscience, C. Craddock, ed., pp. 377–385, University of Wisconsin Press, Madison.

    Google Scholar 

  • Barrera, E., and Huber, B. T. (1993). Eocene to Oligocene Oceanography and temperatures in the Antarctic Indian Ocean.Am. Geophys. Union Antarctic Res. Ser. 60: 49–65.

    Google Scholar 

  • Baverstock, P. R., Krieg, M., and Birrell, J. K. (1990). Evolutionary relationships of Australian marsupials as assessed by albumin immunology.Aust. J. Zool 37: 273–287.

    Google Scholar 

  • Berggren, W. A., Kent, D. V., Swisher, C. C., III, and Aubry, M.-P. (1995). A revised Cenozoic geochronology and biostratigraphy. In:Geochronology, Time Scales and Stratigraphic Correlation: Framework for an Historical Geology, W. A. Berggren, D. V. Kent, M.-P. Aubry, and J. Hardenbol, eds., pp. 129–212,Soc. Strat. Geol. Spec. Publ. 54, Tulsa, OK.

  • Birkenmajer, K. (1988). Tertiary glacial and interglacial deposits, South Shetland Islands, Antarctica: Geochronology versus biostratigraphy (a progress report).Bull. Polish Acad. Sci. Earth Sci. 36: 133–144.

    Google Scholar 

  • Bonaparte, J. F. (1990). New late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia.Natl. Geogr. Res. 6: 63–93.

    Google Scholar 

  • Bond, M., Pascual, R., Reguero, M. A., Santillana, S. N., and Marenssi, S. A. (1990). Los primeros ungulados extinguidos sudamericanos de la Antártida.Ameghiniana 26: 240.

    Google Scholar 

  • Bradshaw, J. D., Weaver, S. D., Pankhurst, R. J., and Storey, B. C. (1995). New Zealand superterranes recognized in Marie Byrd Land and Thurston Island.VII Int. Symp. Antarctica Earth Sci. Abstr., p. 60. Siena, Italy.

  • Callen, R. J., Dulhunty, J. D., Lange, R. T., Plane, M., Tedford, R. H., Wells, R. T., and Williams, D. L. G. (1986). The Lake Eyre Basin-Cainozoic sediments, fossil vertebrates and plants, landforms, silcretes and climatic implications. Australasian Sedimentologists Field Guide Series No. 4,Geol. Soc. Aust. 1–76.

  • Callen, R. J., and Tedford, R. H. (1976). New late Cainozic rock units and depositional environments, Lake Frome area, South Australia.Trans. Roy. Soc. South Aust. 100: 125–168.

    Google Scholar 

  • Cande, S. C., and Kent, D. V. (1992). A new geomagnetic polarity time scale for Late Cretaceous and Cenozoic.J. Geophys. Res. 97(B10): 13,917–13,951.

    Google Scholar 

  • Carlini, A. A., Pascual, R., Reguero, M. A., Scillato-Yané, G. J., Tonni, E. P., and Vizcaino, S. F. (1990). The first Paleogene land placental mammal from Antarctica: Its paleoclimatic and paleobiogeographical bearings.IV Int. Congr. Syst. Evol. Biol. Abstr.

  • Case, J. A. (1988). Paleogene floras from Seymour Island, Antarctic Peninsula. In:Geology and Paleontology of Seymour Island, Antarctic Peninsula, R. M. Feldmann and M. O. Woodburne, eds., pp. 523–530, Geol. Soc. Am. Mem. 169, Boulder, CO.

  • Case, J. A. (1989). Antarctica: The effect of high latitude heterochroneity on the origin of the Australian marsupials. In:Origins and Evolution of the Antarctic Biota, J. A. Crame, ed., pp. 217–226, Geol. Soc. Spec. Publ. 47, London.

  • Case, J. A. (1992a). Paleocene gap in the fossil record of North America didelphids.J. Vert. Paleontol. 12 (Suppl. no 3): 22A.

    Google Scholar 

  • Case, J. A. (1992b). Evidence from fossil vertebrates for a rich Eocene Antarctic marine environment. The Antarctic Paleoenvironment: A perspective on Global Change.Am Geophys. Union Antarctic Res. Ser. 56: 119–130.

    Google Scholar 

  • Case, J. A., Woodburne, M. O., and Chaney, D. S. (1987). A gigantic phororhacoid(?) bird from Antarctica.J. Paleontol. 61: 1280–1284.

    Google Scholar 

  • Case, J. A., Woodburne, M. O., and Chaney, D. S. (1988). A new genus and species of polydolopid marsupial from the La Meseta Formation, late Eocene, Seymour Island, Antarctic Peninsula. In: Geology and Paleontology of Seymour Island, Antarctic Peninsula, R. M. Feldmann, and M. O. Woodburne, eds., pp. 505–521,Geol. Soc. Am. Mem. 169, Boulder, CO.

  • Cifelli, R. L. (1993a). Theria of metatherian-eutherian grade and the origin of marsupials. In:Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 205–215, Springer-Verlag, New York.

    Google Scholar 

  • Cifelli, R. L. (1993b). Early Cretaceous mammal from North America and the evolution of marsupial dental characters.Proc. Natl. Acad. Sci. USA 90: 9413–9416.

    PubMed  Google Scholar 

  • Clemens, W. A., and Lillegraven, J. A. (1986). New Late Cretaceous North American advanced therian mammals that fit neither the marsupial nor eutherian molds.Contrib. Geol. Univ. Wyo. Spec. Paper 3: 55–85.

    Google Scholar 

  • Dalziel, I. W. D., and Elliot, D. H. (1982). West Antarctica: Problem child of Gondwanaland.Tectonics 1: 3–19.

    Google Scholar 

  • Diester-Haas, L., and Zahn, R. (1996). Eocene-Oligocene transition in the southern ocean: history of water mass circulation and biological productivity.Geology 24: 163–166.

    Google Scholar 

  • Ehrmann, W. U., and Mackensen, A. (1992). Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time.Palaeogeogr. Palaeoclimatol. Palaeoecol. 9: 85–112.

    Google Scholar 

  • Flynn, J. J., and Swisher, C. C., III (1995). Cenozoic South American Land Mammal Ages: correlation to global geochronologies. In:Geochronology, Time Scales and Stratigraphic Correlation: Framework for an Historical Geology, W. A. Berggren, D. V. Kent, M.-P. Aubry, and J. Hardenbol, eds., pp. 317–334,Soc. Strat. Geol. Spec. Publ. 54, Tulsa, OK.

  • Gayet, M., Marshall, L. G., and Sempere, T. (1991). The Mesozoic and Paleocene vertebrates of Bolivia and their stratigraphic context: A review.Revista Tec. YPFB Santa Cruz 12: 393–433.

    Google Scholar 

  • Godthelp, H., Archer, M., Cifelli, R., Hand, S. J., and Gilkeson, C. F. (1992). Earliest known Australian Tertiary mammal fauna.Nature 256: 514–516.

    Google Scholar 

  • Goin, F. J., and Carlini, A. A. (1995). An early Tertiary microbiotheriid marsupial from Antarctica.J. Vert. Paleontol. 15: 205–207.

    Google Scholar 

  • Goin, F. J., and Reguero, M. A. (1993). Un “enigmático insectívoro” de Eoceno de Antártida.Ameghiniana 30: 108.

    Google Scholar 

  • Goin, F., Reguero, M. A., and Vizcaino, S. F. (1994). Novedosos hallazgos de “comadrejas” (Marsupialia) del Eoceno Medio de Antartida. III Jornadas Invest. Antartidas. Buenos Aires 9 (abstract).

  • Goin, F. J., Vizcaino, S. F., and Reguero, M. A. (1995). Las “comadrejas” (Mammalia, Marsupialia) del Eoceno de Antartida.XII Jornadas Argentinas Paleontol. Vertebradoas Tucumán 11 (abstract).

  • Greenwood, D. R. (1994). Palaeobotanical evidence for Tertiary climates. In:History of the Australian Vegetation: Cretaceous to Recent, R. S. Hill (ed.), pp. 44–59. Cambridge University Press, Cambridge.

    Google Scholar 

  • Groves, C. P., and Flannery, T. (1990). Revision of the families and genera of bandicoots. In:Bandicoots and Bilbies, J. H. Seebeck, R. L. Brown, R. L. Wallis, and C. M. Kemper, eds., pp. 1–11. Surrey Beatty and Sons, Sydney.

    Google Scholar 

  • Grunow, A. (1992). Creation and destruction of Weddell Sea floor in the Jurassic.Geology 21: 647–650.

    Google Scholar 

  • Harding, R. L., and Aplin, K. P. (1990). Phylogenetic affinities of the koala (Phascolarctidae, Marsupialia): A reassessment of the spermatozoal evidence. In:Biology of the Koala, A. K. Lee, K. A. Handasyde, and G. D. Sanson, eds., pp. 1–31, Surrey Beatty & Sons, Sydney.

    Google Scholar 

  • Hershkovitz, P. (1982). The staggered marsupial lower third incisor (I3).Géobios. Mem. Spec 6: 191–200.

    Google Scholar 

  • Hershkovitz, P. (1992). Ankle bones: The Chilean opossumDromiciops gliroides Thomas, and marsupial phylogeny.Bonn. Zool. Beitr. 43: 181–213.

    Google Scholar 

  • Hershkovitz, P. (1995). The staggered marsupial third lower incisor: Hallmark of cohort Didelphimorphia, and description of a new genus and species with staggered i3 from the Albian (Lower Cretaceous) of Texas.Bonn. Zool. Beitr. 45: 153–169.

    Google Scholar 

  • Hooker, J. J. (1992). An additional record of a placental mammal (Order Astrapotheria) from the Eocene of West Antarctica.Antarctic Sci. 4: 107–108.

    Google Scholar 

  • Hughes, R. L. (1965). Comparative morphology of spermatozoa from five marsupial families.Aust. J. Zool. 13: 533–543.

    Google Scholar 

  • Hume, I. D. (1982).Digestive Physiology and Nutrition of Marsupials. Cambridge University Press, New York.

    Google Scholar 

  • Jones, F. W. (1923–1925).The Mammals of South Australia, Government Printer, Adelaide.

    Google Scholar 

  • Kirsch, J. A. W. (1968). Prodromus of the comparative serology of Marsupialia.Nature 217: 418–420.

    PubMed  Google Scholar 

  • Kirsch, J. A. W. (1977). The comparative serology of the Marsupialia, and a classification of the marsupials.Aust. J. Zool., Suppl. Ser. 51: 1–152.

    Google Scholar 

  • Kirsch, J. A. W., and Archer, M. (1982). Polythetic cladistics, or, when parsimony's not enough: the relationships of carnivorous marsupials. In:Carnivorous Marsupials M. Archer, ed., Royal Zoological Society of New South Wales, pp. 595–619. Surrey Beatty & Sons, Chipping Norton, Australia.

    Google Scholar 

  • Kirsch, J. A. W., and Springer, M. S. (1993). Timing of the molecular evolution of New Guinean marsupials.Sci. New Guinea 19: 147–156.

    Google Scholar 

  • Kirsch, J. A. W., Springer, M. S., Krajewski, C., Archer, M., Aplin, K., and Dickerman, A. W. (1990). DNA/DNA hybridization studies of the carnivorous marsupials. I. The intergeneric relationships of bandicoots (Marsupialia: Perameloidea).J. Mol. Evol. 30: 434–448.

    PubMed  Google Scholar 

  • Kirsch, J. A. W., Dickerman, W. W., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australian affinity of the American marsupialDromiciops australis.Proc. Natl. Acad. Sci. USA 88: 10465–10469.

    PubMed  Google Scholar 

  • Koenigswald, W., v. (1995). Enamel microstructure: Marsupialia vs. placentalia. In: Radlanski, R. J., and Renz, H. (eds.),Proc. 10th Int. Symp. Dent. Morphol., pp. 222–229, Marketing Service, Berlin.

    Google Scholar 

  • Koenigswald, W., v. (1996). Two different strategies in enamel differentiation: Marsupialia vs. Placentalia. In Teaford, M., Ferguson, X., and Smith, M., eds.,Development, Function and Evolution of Teeth, Cambridge University Press, Cambridge (in press).

    Google Scholar 

  • Krajewski, C., Driskell, A. C., Baverstock, P. R., and Braun, M. J. (1992). Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyuroid marsupials: Evidence from cytochrome b DNA sequences.Proc. Roy. Soc. Lond. B 250: 19–27.

    Google Scholar 

  • Krause, D. E., and Bonaparte, J. F. (1990). The Gondwanatheria, a new suborder of Multituberculata from South America.J. Vert. Paleontol. 10 (Suppl. 3): 31A.

    Google Scholar 

  • Lawver, L. A., Gahagan, L. M., and Coffin, F. M. (1992). The development of paleoseaways around Antarctica.Am. Geophys. Union Antarctic Res. Ser. 65: 7–30.

    Google Scholar 

  • Lazarus, D. K., and Caulet, J.-P. (1993). Cenozoic southern Ocean reconstructions from sedimentologic, radiolarian, and other microfossil data.Am. Geophys. Union Antarctic Res. Ser. 60: 145–174.

    Google Scholar 

  • LeMasurier, W. A., and Landis, C. A. (1995). Environment of greakup and timing of mantle plume activity record by the West Antarctic erosion surface.Int. Symp. Antarctic Earth Sci. Abstr., p. 242, Siena, Italy.

  • Lowenstein, J. M., Sarich, V. M., and Richardson, B. J. (1981). Albumin systematics of the extinct mamoth and Tasmanian wolf.Nature 291: 409–411.

    PubMed  Google Scholar 

  • Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian mammals. In:Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Eutherians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 182–204, Springer-Verlag, New York.

    Google Scholar 

  • Luckett, W. P. (1994). Suprafamilial relationships within Marsupialia: Resolution and discordance from multidisciplinary data.J. Mammal. Evol. 2: 225–283.

    Google Scholar 

  • MacPhail, M. K., Alley, N. F., Truswell, E. M., and Suiter, I. R. K. (1994). Early Tertiary vegetation: Evidence from spores and pollen. In:History of the Australian Vegetation: Cretaceous to Recent, R. S. Hill, ed., pp. 189–261. Cambridge University Press, Cambridge.

    Google Scholar 

  • Marenssi, S. A., Reguero, M. A., Santillana, S. N., and Vizcaino, S. F. (1994). Eocene land mammals from Seymour Island, Antarctica: Paleobiogeographical implications.Antarctic Sci. 6: 3–15.

    Google Scholar 

  • Marshall, L. G. (1972). Evolution of the peramelid tarsus.Proc. Roy. Soc. Vic. 85: 51–60.

    Google Scholar 

  • Marshall, L. G. (1987). Systematics of Itaboraian (Middle Paleocene) age “opossum-like” marsupials from the limestone quarry at São José de Itaboraí, Brazil. In:Possums and Opossums: Studies in Evolution, M. Archer (ed.), pp. 91–160. Surrey Beatty and Sons Chipping Norton, NSW.

    Google Scholar 

  • Marshall, L. G., and Muizon, C., de (1988). The dawn of the age of mammals in South America.Natl. Geog. Res. 4: 23–35.

    Google Scholar 

  • Marshall, L. G., and Muizon, C., de (1992). Atlas photographique (MEB) des Metatheria et quelques Eutheria du Paléocène infèrieur de la formation Santa Lucia à Tiupampa (Bolivie).Bull. Mus. Natl. Hist. Nat. Paris (4th ser.)14: 63–91.

    Google Scholar 

  • Marshall, L. G., Muizon, C., de, and Sigé, B. (1983). Late Cretaceous mammals from Bolivia.Gébios 16: 739–745.

    Google Scholar 

  • Marshall, L. G., Case, J. A., and Woodburne, M. O. (1990). Phylogenetic relationships of the families of marsupials. In:Current Mammalogy, Vol. 2, H. Genoways, ed., pp. 433–506, Plenum Press, New York.

    Google Scholar 

  • Marshall, L. G., and Muizon, C., de, (1995). Part II. The skull. In:Pucadelphys andinus (Marsupialia, Mammalia) from the early Paleocene of Bolivia, C. de Muizon, ed.Mem. Mus. Natl. Hist. Nat. Paris 165: 21–90.

  • Marshall, L. G., Sempere, T., and Butler, R. F. (1996). Chronostratigraphy of the mammal-bearing Paleocene of South America.J. South Am. Earth Sci. (in press).

  • Martin, H. A. (1989). Vegetation and climate of the late Cainozoic in the Murry Basin and their bearing on the salinity problem.Bureau Min. Resources J. Aust. Geol. Geophys. 11: 255–279.

    Google Scholar 

  • Maxon, L. R., Sarich, V. M., and Wilson, A. C. (1975). Continental drift and the use of albumin as an evolutionary clock.Nature 255: 397–400.

    Google Scholar 

  • McGowran, B. (1991). Maestrichtian and early Cainozoic, southern Australia: Planktonic foraminiferal biostratigraphy. In:The Cainozoic in Australia: A Re-appraisal of the Evidence, M. A. J. Williams, P. de Decker, and A. P. Kershaw, eds.,Geol. Soc. Aust. Spec. Publ. 18: 79–98.

  • Mohr, B. A. R. (1990). Eocene and Oligocene sporomorphs and dinoflagellate cysts from Leg 113 drill sites, Weddell Sea, Antarctica. In:Proc. ODP Sci. Res., P. G. Barker, and J. P. Kennett, eds., Vol. 113, pp. 595–612.

  • Muirhead, J., and Filan, S. I. (1995).Yarala burchfieldi, a plesiomorphic bandicoot (Marsupialia, Peramelemorphia) from Oligo-Miocene deposits of Riversleigh, northwestern Queensland.J. Paleontol. 69: 127–134.

    Google Scholar 

  • Muizon, C., de (1992). La fauna de mamiferos de Tiupampa (Paleoceno inferior, Formacion Santa Lucia), Bolivia. In:Fosiles y Facies de Bolivia—Vol. 1. Vertebrados, R. Suarez-Soruco, ed., pp. 575–624, Revista Technica de YPFB, Santa Cruz, Bolivia.

    Google Scholar 

  • Muizon, C., de (1994). A new carnivorous marsupial from the Palaeocene of Bolivia and the problem of marsupial monophyly.Nature 370: 208–211.

    Google Scholar 

  • Munson, C. J. (1992). Postcranial descriptions ofIlaria andNgapakaldia (Vombatiformes, Marsupialia) and the phylogeny of the vombatiforms based on postcranial morphology.Univ. Calif. Publ. Zool. 125: 1–99.

    Google Scholar 

  • Norrish, K., and Pickering, J. G. (1983). Clay minerals. In:Soils, an Australian Viewpoint, pp. 281–308, CSIRO/Academic Press, Melbourne.

    Google Scholar 

  • Pascual, R., Archer, M., Ortiz-Jaureguizar, E., Prado, J. L., Godthelp, H., and Hand, S. J. (1992). First discovery of monotremes in South America.Nature 356: 704–706.

    Google Scholar 

  • Pirlot, P. (1981). A quantitative approach to the marsupial brain in an eco-ethological perspective.Rev. Can. Biol. 2: 229–250.

    Google Scholar 

  • Porrenga, D. A. (1968). Non-marine glauconitic illite in the lower Oligocene of Aardedrug, Belgium.Clay Mineral. 7: 421–430.

    Google Scholar 

  • Prentice, M. L., and Matthews, R. K. (1988). Cenozoic ice-volume history: Development of a composite oxygen isotope record.Geology 16: 963–966.

    Google Scholar 

  • Prothero, D. R., and Swisher, C. C., III (1992). Magnetostratigraphy and geochronology of the terrestrial Eocene-Oligocene transition in North America. In:Eocene-Oligocene Climatic and Biotic Evolution, D. R. Prothero and W. A. Berggren, eds., pp. 46–73, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Quilty, P. G. (1994). The background: 144 million years of Australian paleoclimate and palaeogeography. In:History of the Australian Vegetation: Cretaceous to Recent, R. S. Hill (ed.), pp. 14–43, Cambridge University Press, Cambridge.

    Google Scholar 

  • Retief, J. D., Krajewski, C., Westerman, M., Winkfein, R. H., and Dixon, G. H. (1995). Molecular phylogeny and evolution of marsupial protamine P1 genes.Proc. Roy. Soc. London (B) 259: 7–14.

    Google Scholar 

  • Ride, W. D. L. (1964). A review of Australian fossil marsupials.J. Proc. Roy. Soc. West. Aust. 47: 97–131.

    Google Scholar 

  • Sadler, P. M. (1988). Geometry and stratification of uppermost Cretaceous and Paleogene units on Seymour Island, northern Antarctic Peninsula. In:Geology and Paleontology of Seymour Island, Antarctic Peninsula, R. M. Feldmann and M. O. Woodburne (eds.), pp. 303–320.Geol. Soc. Am. Mem. 169, Boulder, CO.

  • Sarich, V., Lowenstein, J. M., and Richardson, B. J. (1982). Phylogenetic relationships ofThylacinus cynocephalus, Marsupialia, as reflected in comparative serology. In:Carnivorous Marsupials, M. Archer, ed., pp. 707–709, Royal Zoological Society of New South Wales, Sydney.

    Google Scholar 

  • Scotese, C. R., and Denham, C. R. (1988).User's Manual for Terra Mobilis: Plate Teconics for the Macintosh.

  • Shen, Y. (1995). A paleoisthmus between southern South America and Antarctic Peninsula during Late Cretaceous and early Tertiary.Int. Symp. Antarctic Earth Sci. Abstr., 345, Siena, Italy.

  • Simpson, G. G. (1953).Evolution and Geography, Condon Lectures, Oregon State System of Higher Education.

  • Smith, C. H. (1995). Mid-crustal conditions and processes during Cretaceous separation of Marie Byrd Land and New Zealand: Evidence from Marie Byrd Land.Int. Symp. Antarctic Earth Sci. Abstr., 355, Siena, Italy.

  • Springer, M. S., and Kirsch, J. A. W. (1991). DNA hybridization, the compression effect, and the radiation of diprotodontian marsupials.Syst. Zool. 40: 131–151.

    Google Scholar 

  • Springer, M. S., Westerman, M., and Kirsch, J. A. W. (1994). Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation.J. Mammal. Evol. 2: 85–115.

    Google Scholar 

  • Springer, M. S., Kirsch, J. A. W., and Case, J. A. (1996). The chronicle of marsupial evolution. In:Molecular Evolution and Adaptive Radiation, T. J. Givnish, and K. J. Sytsma (eds.), Cambridge University Press, Cambridge (in press).

    Google Scholar 

  • Storey, B. C. (1995). Microplates and mantle plumes in Antarctica.Int. Symp. Antarctic Earth Sci. Abstr., 361, Siena, Italy.

  • Strait, S. G. (1993). Molar morphology and food texture among small-bodied insectivorous mammals.J. Mammal. 74: 391.

    Google Scholar 

  • Stump, E., and Fitzgerald, P. G. (1992). Episodic uplift of the Transantarctic Mountains.Geology 20: 161–164.

    Google Scholar 

  • Szalay, F. S. (1982a). A new appraisal of marsupial phylogeny and classification. In:Carnivorous Marsupials, M. Archer, ed., pp. 621–640. Royal Zoological Society of New South Wales, Sydney.

    Google Scholar 

  • Szalay, F. S. (1982b). Phylogenetic relationships of the marsupials.Géobios Mem. Spec. 6: 177–190.

    Google Scholar 

  • Szalay, F. S. (1994).Evolutionary History of the Marsupials and an Analysis of Osteological Characters, Cambridge University Press, New York.

    Google Scholar 

  • Tambussi, C., Noriega, J., Gaździcki, A., Tatur, A., Reguero, M. A., and Vizcaino, S. F. (1994a). The first occurrence of a ratite bird in the Paleogene of Antarctica.XXI Polar Symp., pp. 45–48, Warsaw.

  • Tambussi, C., Noriega, J., Gaździcki, A., Tatur, A., Reguero, M. A., and Vizcaino, S. F. (1994b). Ratite bird from the Paleogene La Meseta Formation, Seymour Island, Antarctica.Polish Polar Res. 15: 15–20.

    Google Scholar 

  • Tedford, R. H., Skinner, M. F., Fields, R. W., Rensberger, J. M., Whistler, D. P., Galusha, T., Taylor, B. E., Macdonald, J. R., and Webb, S. D. (1987). Faunal succession and biochronology of the Arikareean through Hemphillian interval (late Oligocene through earliest Pliocene epochs). In:Cenozoic Mammals of North America: Geochronology and Biostratigraphy, M. O. Woodburne, ed., pp. 153–210, University of California Press, Berkeley.

    Google Scholar 

  • Van Valen, L. M. (1988). Paleocene dinosaurs or Cretaceous ungulates in South America.Evol. Monogr. 10: 1–79.

    Google Scholar 

  • Veevers, J. J. (1991). Phanerozoic Australia in the changing configuration of Proto-Pangea through Gondwanaland and Pangea to the present dispersed continents.Aust. Syst. Bot. 4: 1–11.

    Google Scholar 

  • Veevers, J. J., and Li, Z. X. (1991). Review of sea floor spreading around Australia. II. Marine magnetic anomaly modeling.Aust. J. Earth Sci. 38: 391–408.

    Google Scholar 

  • Veevers, J. J., Powell, C. McA., and Roots, S. R. (1991). Review of sea floor spreading around Australia. I. Synthesis of the patterns of spreading.Aust. J. Earth Sci. 38: 373–389.

    Google Scholar 

  • Vizcaino, S. F., and Scillato-Yané, G. J. (1995). An Eocene tardigrade (Mammalia, Xenarthra) from Seymour Island, West Antarctica.Antarctic Sci. 7: 407–408.

    Google Scholar 

  • Vizcaino, S. F., Carlini, A. A., and Reguero, M. A. (1988). Primer registro de un marsupial Didelphimorphia en Antártida. Su implicancia biogeográfica,5th Jornadas Argent. Paleont. Vert., Abstr., 30–31. Universidad de la Plata, La Plata.

    Google Scholar 

  • Vizcaino, S. F., Reguero, M. A., Marenssi, S. A., and Santillana, S. N. (1994). The fossil record of land mammals from Antarctica.XXI Polar Symp., 49–54, Warsaw.

  • Vizcaino, S. F., Bond M., Reguero, M. A., and Pascual, R. (1996). The youngest record of fossil land mammals from Antarctica: its significance on the evolution of the terrestrial environment of the Antarctic Peninsula during the late Eocene.J. Paleontol. (in press).

  • Wilford, G. E., and Brown, P. J. (1994). Maps of late Mesozoic-Cenozoic Gondwana break-up: some paleogeographical implications. In:History of the Australian Vegetation: Cretaceous to Recent, R. S. Hill (ed.), pp. 5–13, Cambridge University Press, Cambridge.

    Google Scholar 

  • Woodburne, M. O., and Zinsmeister, W. J. (1982). Fossil land mammal from Antarctica.Science 218: 284–286.

    Google Scholar 

  • Woodburne, M. O., and Zinsmeister, W. J. (1984). The first land mammal from Antarctica and its biogeographic implications.J. Paleontol. 58: 913–948.

    Google Scholar 

  • Woodburne, M. O., Tedford, R. H., Archer, M., Turnbull, W. D., Plane, M. D., and Lundelius, E. L., Jr. (1985). Biochronology of the continental mammal record of Australia and New Guinea.Spec. Publ. South Aust. Dept. Mines Energy 5: 347–364.

    Google Scholar 

  • Woodburne, M. O., MacFadden, B. J., Case, J. A., Springer, M., Pledge, N. S., Power, J. D., Woodburne, J. M., and Johnson, K. (1993). Land Mammal Biostratigraphy and Magnetostratigraphy of the Etadunna Formation (late Oligocene) of South Australia.J. Vert. Paleontol. 13: 132–164.

    Google Scholar 

  • Wrenn, J. H., and Hart, G. F. (1988). Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica. In:Geology and Paleontology of Seymour Island, Antarctic Peninsula, R. M. Feldmann and M. O. Woodburne, eds., pp. 321–447,Geol. Soc. Am. Mem. 169, Boulder, CO.

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodburne, M.O., Case, J.A. Dispersal, vicariance, and the Late Cretaceous to early tertiary land mammal biogeography from South America to Australia. J Mammal Evol 3, 121–161 (1996). https://doi.org/10.1007/BF01454359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01454359

Key Words

Navigation