Skip to main content
Log in

Image matching using the windowed Fourier phase

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A theoretical framework is presented in which windowed Fourier phase (WFP) is introduced as the primary matching primitive. Zero-crossings and peaks correspond to special values of the phase. The WFP is quasi-linear and dense; and its spatial period and slope are controlled by the scale. This framework has the following important characteristics: 1) matching primitives are available almost everywhere to convey dense disparity information in every channel, either coarse or fine; 2) the false-target problem is significantly mitigated; 3) the matching is easier, uniform, and can be performed by a network suitable for parallel computer architecture; 4) the matching is fast since very few iterations are needed. In fact, the WFP is so informative that the original signal can be uniquely determined up to a multiplicative constant by the WFP in any channel. The use of phase as matching primitive is also supported by some existing psychophysical and neurophysiological studies. An implementation of the proposed theory has shown good results from synthesized and natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ayache and B. Faverjon, Efficient registration of stereo images by matching graph descriptions of edge segments,Intern. J. Comput. Vis. 1(2):107–131, 1987.

    Google Scholar 

  2. H.H. Baker and T.O. Binford, Depth from edges and intensity based stereo,Proc. 7th Intern. Joint Conf. Artif. Intell., Vancouver, pp. 631–636, August 1981.

  3. R.N. Bracewell,The Fourier transformation and its applications, 2nd ed.) McGraw-Hill: New York, 1986.

    Google Scholar 

  4. O.J. Braddick, A short-range process in apparent motion,Vision Research 14:519–527, 1974.

    Google Scholar 

  5. O.J. Braddick, Low-level and high-level processes in apparent motion,Phil. Trans. Roy. Soc. London, B, 290:137–151, 1980.

    Google Scholar 

  6. P.J. Burt, J.R. Bergen, R. Hingorani, R. Kolezynski, W.A. Lee, A. Leung, J. Lubin, H. Shvaytser, Object tracking with a moving camera,Proc. IEEE Workshop on Visual Motion, pp. 2–12, Irvine, CA, March, 1989.

  7. S.R. Curtis and A.V. Oppenheim, Signal reconstruction from Fourier transform sign information,IEEE Trans. Acoust., Speech Sig. Process. 33(3):643–657, 1985.

    Google Scholar 

  8. L. Dreschler and H.-H. Nagel, Volumetric model and 3-D trajectory of a moving car derived from monocular TV frame sequences of a street scene,Comput. Graph. Image Process. 20:199–228, 1982.

    Google Scholar 

  9. D.J. Fleet and A.D. Jepson, Computation of component image velocity from local phase information,Intern. J. Comput. Vis. 5(1): 77–104, 1990.

    Google Scholar 

  10. K.H. Foster, J.P. Marcelja, and D.A. Pollen, Phase relationships between adjacent simple cells in the feline visual cortex,J. Physiol. Lond., vol. 345, 1983.

  11. D. Gabor, Theory of communication,J. IEE (London) 93:429–457, 1946.

    Google Scholar 

  12. F. Glazer, G. Reynolds, and P. Anandan, Scene matching by hierarchical correlation,Proc. 1st IEEE Conf. Comput. Vis. Patt. Recog., June 1983, pp. 432–441, Washington, D.C.

  13. W.E.L. Grimson,From Images to Surfaces: A Computational Study of the Human Early Visual System, MIT Press, Cambridge, MA, 1981.

    Google Scholar 

  14. D.J. Heeger, Optical flow using spatiotemporal filters, Intern. J. Comput. Vis. 2(4):279–302, 1987.

    Google Scholar 

  15. E.C. Hildreth,The measurement of Visual Motion, MIT Press: Cambridge, MA, 1983.

    Google Scholar 

  16. W. Hoff and N. Ahuja, Surface from stereo: integrating feature matching, disparity estimation and contour detection,IEEE Trans. Patt. Anal. Mach. Intell. 11(2):121–136, 1989.

    Google Scholar 

  17. T.S. Huang, ed.,Image Sequence Processing and Dynamic Scene Analysis, Springer-Verlag: New York, 1975.

    Google Scholar 

  18. R. Hummel, and R. Moniot, Reconstructions from zero crossings in scale space,IEEE Trans. Acous. Speech Sig. Process. 37(12):2111–2130, 1989.

    Google Scholar 

  19. B.K.P. Horn, and B.G. Schunck, Determining optical flow,Artificial Intelligence 17:185–203, 1981.

    Google Scholar 

  20. M.R.M. Jenkin, A.D. Jepson, and J.K. Tsotsos, Techniques for disparity measurement,Comput. Vis. Graph. Image Process: Graphics Models and Image Understanding. 53(1): 14–30, 1991.

    Google Scholar 

  21. A.D. Jepson and M.R.M. Jenkin, The fast computation of disparity from phase differences,Proc. IEEE Conf. Comput. Vis. Patt. Recog., San Diego, CA, pp. 398–403, June 1989.

  22. B. Julesz, Binocular depth perception of computer-generated patterns,Bell Syst. Techn. J 39:1125–1162, 1960.

    Google Scholar 

  23. B. Julesz,Foundations of Cyclopean Perception, University of Chicago Press: Chicago, 1971.

    Google Scholar 

  24. B. Julesz, and J. Miller, Independent spatial-frequency-turned channels in binocular fusion and rivalry,Perception 4:125–143, 1975.

    Google Scholar 

  25. M. Kass, A computational framework for the visual correspondence problem,Proc. DARPA Image Understanding Workshop, Washington DC, 1983.

  26. K. Langley, T.J. Atherton, R.G. Wilson, and M.H.E. Larcombe, Vertical and horizontal disparities from phase,Proc. 1st Europ. Conf. Comput. Vis., Autibes, France, pp. 315–325, 1990.

  27. H.L. Lim and TO. Binford, Stereo correspondence: a hierarchical approach,Proc. DARPA Image Understanding Workshop, Los Angeles, 1987.

  28. D. Marr and T. Poggio, A computational theory of human stereo vision,Proc. Roy. Soc. London, B. 204:301–328, 1979.

    Google Scholar 

  29. D. Marr and E. Hildreth, Theory of edge detectionProc. Roy. Soc. London B, 207:187–217, 1980.

    Google Scholar 

  30. J.E.W. Mayhew and J.P. Frisby, Psychophysical and computational studies towards a theory of human stereopsis,Artificial Intelligence 17:349–385, 1981.

    Google Scholar 

  31. H.P. Moravec, Obstacle avoidance and navigation in the real world by seeing a robot rover,Stanford Artif. Intell. Lab. Memo 340, 1980.

  32. K.P.K. Nielson and T. Poggio, Vertical image registration in human stereopsis.MIT Artif. Intell. Memo, 743, 1983.

  33. I. Ohta and T. Kanade, Stereo by intra- and inter-scanline search using dynamic programming,IEEE Trans. Patt. Anal. Mach. Intell., 7:139–154, 1985.

    Google Scholar 

  34. I. Ohzawa and R.D. Freeman, The binocular organization of simple cells in the cat's visual cortex,J. Neurophysiology, 56(1): 221–242, 1986.

    Google Scholar 

  35. I. Ohzawa and R.D. Freeman, The binocular organization of complex cells in the cat's visual cortex,J. Neurophysiology 56(1):243–259, 1986.

    Google Scholar 

  36. A.V. Oppenheim and J.S. Lim, The importance of phase in signals,Proc. IEEE, 69(5):529–541, 1981.

    Google Scholar 

  37. D.A. Pollen and S.F. Ronner, Spatial computation performed by simple and complex cells in the visual cortex of the cat,Vision Research 22:101–118, 1982.

    Google Scholar 

  38. G.F. Poggio and T. Poggio, The analysis and stereopsis,Ann. Rev. Neurosci. 7:379–412, 1984.

    Google Scholar 

  39. T. Poggio, V. Torre, and C. Koch, Computational vision and regularization theory,Nature, 317:638–643, 1985.

    Google Scholar 

  40. T.D. Sanger, Stereo disparity computation using Gabor filters,Biological Cybernetics 59:405–418, 1988.

    Google Scholar 

  41. H. Spitzer and S. Hochstein, Simple- and complex-cell response dependences on stimulation parameters,J. Neurophysiology 53(5):1244–1265, 1984.

    Google Scholar 

  42. T.T. Huang and J.C. Sanz, Image representation by one-bit Fourier phase: theory, sampling, and coherent image model,IEEE Trans. Acoust. Speech Sig. Process. 36(8):1292–1304, 1988.

    Google Scholar 

  43. S. Ullman,The Interpretation of Visual Motion, MIT Press: Cambridge, MA, 1979.

    Google Scholar 

  44. A.M. Waxman, An image flow paradigm,Proc. Workshop on Computer Vision: Representation and Control, Annapolis, MD, pp. 49–57, 1984.

  45. J. Weng, N. Ahuja, and T.S. Huang, Two-view matching,Proc. 2nd Intern. Conf. Comput. Vis. Tampa, FL, pp. 64–73, 1988.

  46. J. Weng, A theory of image matching,Proc. 3rd Intern. Conf. Comput. Vis., Osaka, Japan, pp. 200–209, 1990.

  47. J. Weng, Signal reconstruction from windowed Fourier phase,Proc. Intern. Conf. Acoust. Speech, Sig. Process., San Francisco, CA, vol. 4, pp. 145–148, March, 1992.

    Google Scholar 

  48. J. Weng, N. Ahuja, and T.S. Huang, Matching two perspective views,IEEE Trans. Patt. Anal. Mach. Intell. 14(8):806–825, 1992.

    Google Scholar 

  49. J. Weng, Windowed Fourier phase: Completeness and signal reconstruction,IEEE Trans. Sig. Process. 41(2):657–666, 1993.

    Google Scholar 

  50. H.R. Wilson and J.R. Bergen, A four-mechanism model for threshold spatial vision,Vision Research 19:19–32, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, J.(. Image matching using the windowed Fourier phase. Int J Comput Vision 11, 211–236 (1993). https://doi.org/10.1007/BF01469343

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01469343

Keywords

Navigation