Skip to main content
Log in

Biochemische und pathophysiologische Aspekte der Hyperammoniämie

Biochemical and pathophysiological aspects of hyperammonaemia

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

1. Ammonia liberated continously in large amounts in muscle, kidney and brain is used immediately for the synthesis of mainly glutamine because of the toxic effects of elevated ammonia concentrations. After glutamine hydrolysis in the liver ammonia serves as substrate for the urea biosynthesis. In ureotelic animals urea is the quantitatively most important product for the elimination of surplus nitrogen.

2. The rate of urea biosynthesis depends on the amount of surplus nitrogen and acts as regulatory factor for the nitrogen balance of the adult organism.

3. Urea cycle abnormalities in liver diseases or inborn enzymatic defects are important factors leading to hyperammonaemia in patients.

4. The hyperammonaemia induces an increase of the rate of hepatic pyrimidine nucleotide biosynthesis as a consequence of an ineffective feedback inhibition of the glutamine-dependent carbamoyl phosphate synthetase.

5. The distribution of ammonia between intra-and extracellular space and the amount of ammonium ions excreted in the urine depend on the pH value. An alkalosis induces an intracellular ammonia load and inhibits the urinary ammonium ion excretion, which is increased in acidosis as one mechanism of proton elimination.

6. The ammonia-induced inhibition of the citric acid cycle caused by an α-ketoglutarate deficiency is one important reason for the neurotoxicity of ammonia, which is the main point in the pathogenesis of hepatic coma.

Zusammenfassung

1. Das ständig in großen Mengen in Muskulatur, Niere und Gehirn freigesetzte Ammoniak wird wegen seiner toxischen Wirkungen am Entstehungsort überwiegend in Form von Glutamin fixiert, um in der Leber als Substrat in die Harnstoffsynthese einzugehen. In Ureoteliern ist Harnstoff die quantitativ bedeutsamste Eliminationsform überschüssigen Stickstoffs.

2. Die Anpassung der Harnstoffsyntheserate an die Menge des im Stoffwechsel überschüssigne Stickstoffs dient der ausgeglichenen Stickstoffbilanz des erwachsenen Organismus.

3. Störungen der Harnstoffsynthese bei Lebererkrankungen oder kongenitalen Enzymdefekten sind als klinisch bedeutsamste Ursachen der Hyperammoniämie anzusehen.

4. Die Hyperammoniämie bewirkt eine Steigerung der Syntheserate von Pyrimidinnucleotiden in der Leber, die durch eine Umgehung der Feedback-Hemmung der Glutamin-abhängigen Carbamoylphosphatsynthetase zustandekommt.

5. Die Ammoniakverteilung zwischen intra- und extrazellulärem Raum und die Ammoniumionenausscheidung im Urin sind pH-abhängig. Eine Alkalose führt zum Ammoniakeinstrom in den Intracellulärraum und zur Hemmung der Ammoniumionenausscheidung im Urin. Die bei Acidose gesteigerte renale Ammoniumionenausscheidung dient gleichzeitig der Elimination von H+-Ionen.

6. Eine wesentliche Ursache der Neurotoxizität des Ammoniaks, die bei der Pathogenese des Coma hepaticum Bedeutung hat, ist die Hemmung des Citratcyclus durch α-Ketoglutaratmangel im Gehirn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Adam, H.: In: Methods of Enzymatic Analysis, ed. Bergmeyer, H.U., 1st English edition, p. 573–577, New York: Academic Press 1965

    Google Scholar 

  2. Allison, J.B., Bird, J.W.C.: In: Mammalian Protein Metabolism, eds. Munro, H.H., Allison, J.B., Vol. I, p. 483–512, London: Academic Press 1964

    Google Scholar 

  3. Bessman, S.P., Bessman, A.N.: The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. clin. Invest.34, 622–628 (1955)

    Google Scholar 

  4. Clark, G.M., Eiseman, B.: Studies in ammonia metabolism: IV. Biochemical changes in brain tissue of dogs during ammonia-induced coma. New Engl. J. Med.259, 178–180 (1958)

    Google Scholar 

  5. Decker, K., Keppler, D., Pausch, J.: The regulation of pyrimidine nucleotide level and its role in experimental hepatitis. Adv. Enzyme Regul.11, 205–230 (1973)

    Google Scholar 

  6. Domschke, W., Keppler, D., Bischoff, E., Decker, K.: Cytosine nucleotides in liver. Hoppe-Seyler's Z. Physiol. Chem.352, 275–279 (1971)

    Google Scholar 

  7. Fausto, N., Brandt, J.T., Kesner, L.: Possible interactions between the urea cycle and synthesis of pyrimidines and polyamines in regenerating liver. Cancer Res.35, 397–404 (1975)

    Google Scholar 

  8. Felig, P., Marliss, E., Pozefsky, T., Cahill, G.F. jr.: Alanine: key role in gluconeogenesis. Science167, 1003–1004 (1970)

    Google Scholar 

  9. Felig, P.: The glucose-alanine cycle. Metabolism22, 179–207 (1973)

    Google Scholar 

  10. Fischer, J.E., Baldessarini, R.J.: False neurotransmitters and hepatic failure. LancetII, 75–80 (1971)

    Google Scholar 

  11. Gelehrter, T.D., Snodgrass, P.J.: Lethal neonatal deficiency of carbamyl phosphate synthetase. New Engl. J. Med.290, 430–433 (1974)

    Google Scholar 

  12. Gerez, C., Kirsten, R.: Untersuchungen über Ammoniakbildung bei der Muskelarbeit. Biochem. Z.341, 534–542 (1965)

    Google Scholar 

  13. Gerok, W.: Biochemische Vorgänge bei der Entstehung einer Hyperammoniämie. Anaesthesiologie und Wiederbelebung13, 94–102 (1966)

    Google Scholar 

  14. Gerok, W., Pausch, J.: Vergleichende Untersuchungen über Methoden der Ammoniumbestimmung im Blut. Z. ges. exp. Med.148, 337–354 (1968)

    Google Scholar 

  15. Goldstein, L., Schooler, J.M.: Regulation of ammonia production in the rat kidney. Adv. Enzyme Regul.5, 71–87 (1966)

    Google Scholar 

  16. Grassl, M.: In: Methoden der enzymatischen Analyse, Hrsg. Bergmeyer, H.U., p. 2084–2087, Weinheim: Verlag Chemie 1970

    Google Scholar 

  17. Grisolia, S., Cohen, P.P.: Catalytic role of glutamine derivatives in citrulline biosynthesis. J. Biol. Chem.204, 753–757 (1953)

    Google Scholar 

  18. Haag, G., Holldorf, A.W., Gerok, W.: Veränderungen der Argininosuccinatsynthetase-Aktivität in der Leber bei chronischen Lebererkrankungen. Klin. Wschr.50, 887–889 (1972)

    Google Scholar 

  19. Holm, E.: In: Ammoniak und hepatische Encephalopathie, Hrsg. Holm, E., p. 5–32, Stuttgart: Gustav-Fischer-Verlag 1975

    Google Scholar 

  20. Jones, M.E.: Regulation of pyrimidine and arginine biosynthesis in mammals. Adv. Enzyme Regul.9, 19–49 (1971)

    Google Scholar 

  21. Katunuma, N., Okada, M., Nishii, Y.: Regulation of the urea cycle and TCA cycle by ammonia. Adv. Enzyme Regul.4, 317–335 (1965)

    Google Scholar 

  22. Katunuma, N., Huzino, A., Tomino, I.: Organ specific control of glutamine metabolism. Adv. Enzyme Regul.5, 55–69 (1966)

    Google Scholar 

  23. Keppler, D., Rudigier, J., Decker, K.: Enzymic determination of uracil nucleotides in tissues. Anal. Biochem.38, 105–114 (1970)

    Google Scholar 

  24. Kesner, L.: The effect of ammonia administration on orotic acid excretion in rats. J. Biol. Chem.240, 1722–1724 (1965)

    Google Scholar 

  25. Krebs, H.A., Hems, R., Lund, P.: Some regulatory mechanisms in the synthesis of urea in the mammalian liver. Adv. Enzyme Regul.11, 361–377 (1973)

    Google Scholar 

  26. Lamprecht, W., Trautschold, I.: In: Methoden der enzymatischen Analyse, Hrsg. Bergmeyer, H.U., p. 2151–2160, Weinheim: Verlag Chemie 1974

    Google Scholar 

  27. Levin, B., Oberholzer, V.G., Sinclair, L.: Biochemical investigations of hyperammonaemia. LancetII, 170–174 (1969)

    Google Scholar 

  28. Lowenstein, J.M.: Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol. Rev.52, 382–411 (1972)

    Google Scholar 

  29. Malette, L.E., Exton, H.J., Park, C.R.: Control of gluconeogenesis from amino acids in the perfused rat liver. J. Biol. Chem.244, 5713–5723 (1969)

    Google Scholar 

  30. McGivan, J.D., Chappell, J.B.: On the metabolic function of glutamate dehydrogenase in rat liver. FEBS Lett.52, 1–7 (1975)

    Google Scholar 

  31. McMurray, W.C., Monhyuddin, F., Rossiter, R.J., Rathbun, C.J., Valentine, C.H., Koegler, S.J., Zarfas, D.E.: Citrullinuria: A new aminoaciduria associated with mental retardation. LancetI, 138 (1962)

    Google Scholar 

  32. Meijer, A.J., Gimpel, J.A., Deleeuw, G.A., Tager, J.M., Williamson, J.R.: Role of anion translocation across the mitochondrial membrane in the regulation of urea synthesis from ammonia by isolated rat hepatocytes. J. Biol. Chem.250, 7728–7738 (1975)

    Google Scholar 

  33. Milner, J.A., Visek, W.J.: Orotate, citrate, and urea excretion in rats fed various levels of arginine. Proc. Soc. Exp. Biol. Med.147, 754–759 (1974)

    Google Scholar 

  34. Milner, J.A., Visek, W.J.: Urinary metabolites chracteristic of urea-cycle amino acid deficiency. Metabolism24, 643–651 (1975)

    Google Scholar 

  35. Pausch, J., Wilkening, J., Nowak, J., Decker, K.: Control of pyrimidine biosynthesis in the perfused liver: Feedback inhibition of glutamine-dependent carbamoyl phosphate synthetase. Eur. J. Biochem.53, 349–356 (1975)

    Google Scholar 

  36. Pitts, R.F.: The renal regulation of acid-base balance with special reference to the mechanism for acidifying the urine. Science102, 49–54 (1945)

    Google Scholar 

  37. Pitts, R.F.: Renal production and excretion of ammonia. Amer. J. Med.36, 720–742 (1964)

    Google Scholar 

  38. Pitts, R.F., Pilkington, L.A., de Haas, J.C.M.: N15 Tracer studies on the origin of urinary ammonia in the acidotic dog, with notes on the enzymatic synthesis of labeled glutamic acid and glutamines. J. clin. Invest.44, 731–745 (1965)

    Google Scholar 

  39. Ratner, S.: Enzymes of arginine and urea synthesis. Adv. Enzymol.39, 1–90 (1973)

    Google Scholar 

  40. Russell, A., Levin, B., Oberholzer, V.G., Sinclair, L.: Hyperammonaemia: A new instance of an inborn enzymatic defect of the biosynthesis of urea. LancetII, 689–700 (1962)

    Google Scholar 

  41. Saheki, T., Katunuma, N.: Analysis of regulatory factors for urea synthesis by isolated perfused rat liver. I. Urea synthesis with ammonia and glutamine as nitrogen sources. J. Biochem. (Tokyo)77, 659–669 (1975a)

    Google Scholar 

  42. Saheki, T., Tsuda, M., Tanaka, T., Katunuma, N.: Analysis of regulatory factors for urea synthesis by isolated perfused rat liver. II. Comparison of urea synthesis in livers of rats subjected to different dietary conditions. J. Biochem. (Tokyo)77, 671–678 (1975b)

    Google Scholar 

  43. Schimke, R.T.: Adaptive characteristics of urea cycle enzymes in the rat. J. Biol. Chem.237, 459–468 (1962)

    Google Scholar 

  44. Schlienger, J.L., Imler, M., Stahl, J.: In: Neue Erkenntnisse zum Ammoniakstoffwechsel, Hrsg. Imler, M., Szám, I., 1st edition, p. 145–156, Baden-Baden, Brüssel: Verlag G Witzstrock GmbH 1974

    Google Scholar 

  45. Shigesada, K., Tatibana, M.: Role of acetylglutamate in ureotelism. I. Occurence and biosynthesis of acetylglutamate in mouse and rat tissues. J. Biol. Chem.246, 5588–5595 (1971)

    Google Scholar 

  46. Sies, H., Summer, K.-H., Bücher, T.: A process requiring mitochondrial NADPH: urea formation from ammonia. FEBS Lett.54, 274–278 (1975)

    Google Scholar 

  47. Statter, M., Russell, A., Azbug-Horowitz, S., Pinson, A.: Abnormal orotic acid metabolism associated with acute hyperammonaemia in the rat. Biochem. Med.9, 1–18 (1974)

    Google Scholar 

  48. Szám, I., Vass, A., Puls, J.: In: Neue Erkenntnisse zum Ammoniakstoffwechsel, Hrsg. Imler, M., Szám, I., 1st edition, p. 130–136, Baden-Baden, Brüssel: Verlag G. Witzstrock GmbH 1974

    Google Scholar 

  49. Tatibana, M., Shigesada, K.: Two carbamyl phosphate synthetases of mammals: Specific roles in control of pyrimidine and urea biosynthesis. Adv. Enzyme Regul.10, 249–271 (1972)

    Google Scholar 

  50. Ugarte, G., Pino, M.E., Valenzuela, J., Lorca, F.: Urea cycle enzymatic abnormalities in patients in endogenous hepatic coma. Gastroenterology45, 182–188 (1963)

    Google Scholar 

  51. Van der Lee, P.J., Gorter, A.: Der Einfluß des Ernährungszustandes auf den harnstoffbildenden Fermentkomplex der Rattenleber. Enzymologia4, 129–136 (1937)

    Google Scholar 

  52. Warren, K.S., Schenker, S.: Effect of an inhibitor of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism. J. Lab. clin. Med.64, 442–449 (1964)

    Google Scholar 

  53. Westall, R.G.: Argininosuccinic aciduria: Identification and reactions of the abnormal metabolite in a newly described form of mental disease with some preliminary metabolic studies. Biochem. J.77, 135–144 (1960)

    Google Scholar 

  54. Wolpert, E., Phillips, S.F., Summerskill, W.H.J.: Transport of urea and ammonia production in the human colon. LancetII, 1387–1390 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Dr. Paul Schölmerich zum 60. Geburtstag gewidmet

Mit Unterstützung durch die Deutsche Forschungsgemeinschaft, Bonn — Bad Godesberg, und die Forschergruppe „Leberkrankheiten“, Freiburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pausch, J., Gerok, W. Biochemische und pathophysiologische Aspekte der Hyperammoniämie. Klin Wochenschr 55, 97–103 (1977). https://doi.org/10.1007/BF01490236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01490236

Key words

Schlüsselwörter

Navigation