Skip to main content
Log in

Flash photolysis of flavins. IV. Some properties of the lumiflavin triplet state

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

Analysis of lumiflavin triplet-state decay kinetics in aqueous solution has given the following results:k 1 (first-order decay)=670 sec−1,k 2 (triplet-triplet quenching)=8·9×108 M−1 sec−1,k 3 (triplet-ground-state quenching)=3·7×108 M−1 sec−1. The FMN triplet decays mainly via intramolecular quenching by the ribityl side chain and triplet-groundstate quenching. Ferricyanide and phenols are shown to be excellent quenchers of the flavin triplet (comparable to KI and O2). In the case of phenols, quenching occurs via hydroxyl hydrogen abstraction to generate flavin radical and phenoxy radical. Recombination of these radicals (by reverse hydrogen transfer) competes effectively with flavin radical disproportionation. The lumiflavin triplet is also able to abstract hydrogen from a ground state lumiflavin molecule (probably from the 10-methyl group). The radicals so generated can either recombine or undergo a buffer-catalyzed reaction leading to permanent bleaching. Evidence is presented for rapid oxidation of lumiflavin radical by both oxygen and ferricyanide. In dry non-polar solvents, lumiflavin triplet formation is prevented; addition of small amounts of water restores the ability to produce triplet state molecules. This is probably due to an effect of water on intersystem crossing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent review, see G. R. Penzer and G. K. Radda,Quart. Rev.,21 (1967) 43.

    Google Scholar 

  2. W. R. Briggs, in: Photophysiology, A. C. Giese (ed.), Academic Press, New York, 1964, vol. I, pp. 249–259.

    Google Scholar 

  3. G. Tollin and M. I. Robinson,Photochem. Photobiol.,9 (1969) 411.

    PubMed  Google Scholar 

  4. B. Diehn,Biochim. Biophys. Acta,177 (1969) 136.

    PubMed  Google Scholar 

  5. W. Haupt and I. Schönfeld,Ber. Deutsch. Bot. Ges.,75 (1962) 14.

    Google Scholar 

  6. Cf. M. Green and G. Tollin,Photochem. Photobiol.,7 (1968) 145, and references cited therein.

    PubMed  Google Scholar 

  7. L. Tegner and B. Holmström,Photochem. Photobiol.,5 (1966) 223.

    Google Scholar 

  8. J. M. Lhoste, A. Haug, and P. Hemmerich,Biochem.,5 (1966) 3290.

    Google Scholar 

  9. A. V. Guzzo and G. Tollin,Arch. Biochem. Biophys.,103 (1963) 231.

    PubMed  Google Scholar 

  10. A. Knowles and E. M. F. Roe,Photochem. Photobiol.,7 (1968) 421.

    PubMed  Google Scholar 

  11. E. J. Land and A. J. Swallow,Biochem.,8 (1969) 2117.

    Google Scholar 

  12. H. Linschitz and K. Sarkanen,J. Am. Chem. Soc.,80 (1958) 4826.

    Google Scholar 

  13. E. J. Land, G. Porter and E. Strachan,Trans. Faraday Soc.,57 (1961) 1885.

    Google Scholar 

  14. N. Getoff and G. O. Schenck,Photochem. Photobiol.,8 (1968) 167.

    Google Scholar 

  15. J. Koziol,Photochem. Photobiol.,5 (1966) 41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaish, S.P., Tollin, G. Flash photolysis of flavins. IV. Some properties of the lumiflavin triplet state. J Bioenerg Biomembr 1, 181–192 (1970). https://doi.org/10.1007/BF01515980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515980

Keywords

Navigation