Skip to main content
Log in

Effects of couple-stresses on the dispersion of a soluble matter in a pipe flow of blood

  • Original Contributions · Originalarbeiten
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

An analysis of the effects of couple-stresses on the effective Taylor diffusion coefficient has been carried out with the help of two non-dimensional parameters\(\bar \alpha \) based on the concentration of suspensions and\(\bar \eta \), a constant associated with the couple-stresses. It is observed that the concentration distribution increases with increasing\(\bar \alpha \) or\(\bar \eta \) The effective Taylor diffusion coefficient falls rapidly with increasing\(\bar \alpha \) when\(\bar \eta \) is negative.

Zusammenfassung

Der Einfluß der Momentenspannungen auf den effektiven Taylorschen Diffusionskoeffizienten wird untersucht. Dabei treten zwei dimensionslose Parameter\(\bar \alpha \) and\(\bar \eta \) auf: Der erste bezieht sich auf die Suspensionskonzentration, der zweite kennzeichnet die Momentenspannungen. Man findet, daß die Verteilungsgeschwindigkeit mit wachsendem\(\bar \alpha \) oder\(\bar \eta \) zunimmt. Dagegen fällt der Taylorsche Diffusionskoeffizient bei wachsendem\(\bar \alpha \) stark ab, wenn\(\bar \eta \) negativ ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Tube radius

C :

Concentration

C i :

Body moment vector

C 0 :

Concentration at the axis of the tube

C m :

Mean concentration

D :

Molecular diffusion coefficient

d ij :

Symmetric part of velocity gradient

F :

Function of\(\bar \alpha \) and\(\bar \eta \) characterising effective Taylor diffusion coefficient

f i :

Body force vector

H :

A function of\(\bar \alpha \) and\(\bar \eta \)

K 2 :

Integration constant

K * :

Effective Taylor diffusion coefficient

k :

Radius of gyration of a unit cuboid with its sides normal to the spatial axes

I n :

Modified Bessel's function ofnth order

L :

Length of the tube over which the concentration is spread

M :

Function ofH and\(\bar \alpha \)

M ij :

Couple stress tensor

P :

Function of\(\bar \alpha \)

p :

Fluid pressure

Q :

Volume rate of the transport of the solute across a section of the tube

r :

Radial distance from the axis of the tube

T ij :

Stress tensor

t :

Time coordinate

T A ij :

Antisymmetric part of the stress tensor

u :

Relative fluid velocity

\(\bar v\) :

Average velocity

v i :

Velocity vector

\(\bar v\) :

Fluid velocity at any point of the tube

v n0 :

Velocity of Newtonian fluid at the axis of the tube

ω i :

Vorticity vector

x :

Axial coordinate

x 1 :

Relative axial coordinate

z :

Non-Dimensional radial coordinate

ρ :

Density

τ ij :

Symmetric part of the stress tensor

µ :

Viscosity of the fluid

µ ij :

Deviatoric part ofM ij

η′, η :

Constants associated with couple-stress

References

  1. Bugliarello, G., J. Sevilla J. Biorheology7, 85 (1970).

    Google Scholar 

  2. Goldsmith, H. L., R. Skalak ‘Hemodynamics’, in:M. van Dyke (ed.), Annual Review of Fluid Dynamics, Vol. 7, Annual Reviews Inc. (Palo Alto, Cal. 1975).

    Google Scholar 

  3. Cokelet, G. R. ‘The rheology of human blood’, in:Y. C. Fung (ed.), Biomechanics: Its Foundations and Objectives, pp. 63–103, Prentice Hall (Englewood Cliffs, N.J., 1972).

    Google Scholar 

  4. Kang, C. K., A. C. Eringen Bull. Mathl. Biol.38, 135 (1976).

    Google Scholar 

  5. Popel, A. S., S. A. Regirer, P. I. Usick Biorheology11, 427 (1974).

    Google Scholar 

  6. Kline, K. A., S. J. Allen, C. N. DeSilva Biorheology5, 111 (1968).

    Google Scholar 

  7. Valanis, K. C., C. T. Sun Biorheology6, 85 (1969).

    Google Scholar 

  8. Stokes, V. K. Phys. Fluids9, 1709 (1966).

    Google Scholar 

  9. Taylor, G. I. Proc. Roy. Soc. (London)A 219, 186 (1953).

    Google Scholar 

  10. Taylor, G. I. Proc. Roy. Soc. (London)A 223, 446 (1954).

    Google Scholar 

  11. Taylor, G. I. Proc. Roy. Soc. (London)A 225, 473 (1954).

    Google Scholar 

  12. Fan, L. T., W. S. Hwang Proc. Roy. Soc. (London)A 283, 576 (1965).

    Google Scholar 

  13. Fan, L. T., C. B. Wang Proc. Roy. Soc. (London)A 292, 203 (1966).

    Google Scholar 

  14. Levich, V. G., ‘Physico-Chemical Hydrodynamics’, p. 58, Prentice Hall Inc. (1962).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soundalgekar, V.M., Chaturani, P. Effects of couple-stresses on the dispersion of a soluble matter in a pipe flow of blood. Rheol Acta 19, 710–715 (1980). https://doi.org/10.1007/BF01521862

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01521862

Keywords

Navigation