Skip to main content
Log in

Dependence of the yield point of polymer materials on hydrostatic pressure and certain plasticity criteria

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

Conclusions

  1. 1.

    The yield criteria recommended for polymers, in which the effect of hydrostatic pressure is formally reflected, are insufficiently reliable and can be used in engineering computations only for special cases of loading.

  2. 2.

    The strength criteria of polymer materials should be included as an independent parmeter of the third invariant of the stress deviator. To define the structure of the criterion more precisely, it is necessary to acquire in a rational manner experimental data on the mechanical properties of polymers in a complex stressed state.

  3. 3.

    A discontinuity in the convexity of the limiting surface, which is associated with structural changes in the material and with a change in the deformation mechanisms of the polymers at high levels of hydrostatic pressure, is observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. S. B. Aibinder, K. I. Alsne, É. L. Tyunina, and M. G. Laka, Properties of Polymers Under High Pressures [in Russian], Khimiya, Moscow (1973).

    Google Scholar 

  2. J. A. Sauer, “Deformation, yield, and fracture of polymers at high pressure”, Polym. Eng. Sci.,17, No. 3, 150–164 (1977).

    Google Scholar 

  3. K. D. Pae and S. K. Bhateja, “The effect of hydrostatic pressure on the mechanical behavior of polymers”, J. Macromol. Sci.: Rev. Macromol. Chem.,13, No. 1, 1–75 (1975).

    Google Scholar 

  4. S. A. Tsygankov, N. P. Demechuk, and G. É. Mesh, “On the hydroextrusion of polymers”, in: Modeling the Structure and Properties of Polymers [in Russian], ONPO “Plastpolimer”, Leningrad (1981), pp. 86–91.

    Google Scholar 

  5. P. Bridgeman, Investigation of Large Plastic Deformations and Rupture [Russian translation], IL, Moscow (1955).

    Google Scholar 

  6. P. B. Bowden and S. Raha, “The formation of microshear bands in polystyrene and polymethylmethacrylate, Philos. Mag.,22, No. 177, 463–482 (1970).

    Google Scholar 

  7. K. D. Pae, “The macroscopic yielding behavior of polymers in multiaxial stress fields”, J. Mater. Sci.,12, No. 8, 1209–1215 (1977).

    Google Scholar 

  8. K. B. Baknell, Shock-Resistant Plastics [Russian translation], Khimiya, Leningrad (1981).

    Google Scholar 

  9. S. S. Sternstein and L. Ongchin, “Yield criteria for plastic deformation of glassy high polymers in general stress fields”, Am. Chem. Soc. Polym. Prepr.,10, No. 2, 1117–1124 (1969).

    Google Scholar 

  10. R. Raghava, R. M. Caddell, and G. S. Y. Yeh, “The macroscopic yield behavior of polymers”, J. Mater. Sci.,7, No. 2, 326–343 (1973).

    Google Scholar 

  11. G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials in a Complex Stressed State [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  12. I. I. Gol'denblat and V. A. Kopnov, “General strength criteria of isotropic media”, Mekh. Polim., No. 2, 251–261 (1971).

    Google Scholar 

  13. A. A. Silano, S. K. Bhateja, and K. D. Pae, “Effect of hydrostatic pressure on the mechanical behavior of polymers: polyurethane, polyoxymethylene and branched polyethylene”, Int. J. Polym. Mater.,3, No. 2, 117–131 (1974).

    Google Scholar 

  14. A. A. Silano, K. D. Pae, and J. A. Sauer, “Effect of hydrostatic pressure on shear deformation of polymers”, J. Appl. Phys.,48, No. 10, 4076–4084 (1977).

    Google Scholar 

  15. J. A. Sauer, D. R. Mears, and K. D. Pae, “Effect of hydrostatic pressure on the mechanical behavior of polytetrafluorethylene and polycarbonate”, Eur. Polym. J.,6, No. 7, 1015–1032 (1970).

    Google Scholar 

  16. K. D. Pae and J. A. Sauer, “Shear deformation under hydrostatic pressure of polytetrafluorethylene and polycarbonate,” in: High Pressure Science and Technology, Sixth AIRAPT Conference, Vol. 2 (1979), pp. 512–518.

  17. A. Ya. Gol'dman, Strength of Structural Plastics [in Russian], Mashinostroenie, Leningrad (1979).

    Google Scholar 

  18. H. N. Yoon, K. D. Pae, and J. A. Sauer, “The effect of combined pressure-temperature on mechanical behavior of polypropylene”, J. Polym. Sci.: Polym. Phys. Ed.,14, No. 9, 1611–1627 (1976).

    Google Scholar 

  19. A. Ya. Gol'dman and S. A. Tsygankov, “Predicting creep deformations of polymer material in a complex stressed state”, Mekh. Kompozitn. Mater., No. 6, 1088–1093 (1980).

    Google Scholar 

  20. A. A. Vakulenko, “On relations between stresses and strains in inelastic media”, Issled. Uprug. Plastich., No. 1, 3–35 (1961).

    Google Scholar 

  21. V. I. Levitas, “On certain inelastic-strain models of materials. Reports 1 and 2”, Probl. Prochn., No. 12, 70–83 (1980).

    Google Scholar 

Download references

Authors

Additional information

ONPO “Plastpolimer.” Institute of Strength Problems, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Problemy Prochnosti, No. 3, pp. 62–66, March, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gol'dman, A.Y., Freidin, A.B. & Lebedev, A.A. Dependence of the yield point of polymer materials on hydrostatic pressure and certain plasticity criteria. Strength Mater 15, 373–377 (1983). https://doi.org/10.1007/BF01523186

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01523186

Keywords

Navigation