Skip to main content
Log in

Regulation of tyrosinase mRNA levels in mouse melanoma cell clones by melanocyte-stimulating hormone and cyclic AMP

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Mouse melanoma cells in culture respond to melanocyte-stimulating hormone (MSH) by demonstrating increased activity of tyrosinase, the rate-limiting enzyme for melanin synthesis. Because this stimulation is strictly dependent upon continued transcription and translation, we have carried out studies to determine if MSH increases the level of tyrosinase mRNA. The abundance of tyrosinase message levels in melanoma cells treated with either MSH or dibutyryl cAMP was determined by Northern blot analysis utilizing a 946 base pair mouse tyrosinase cDNA probe. The tyrosinase cDNA was isolated from a λgt11 expression library generated from mRNA isolated from theopylline-induced Cloudman melanoma cells. The abundance of tyrosinase mRNA was determined in an amelanotic cell clone (AM-7AS) and a melanotic cell clone (MEL-11AS). The melanotic cell line had five times as much tyrosinase activity and almost 10 times more tyrosinase mRNA than the amelanotic line. Tyrosinase activity and mRNA increased in both cell lines after MSH addition. The amelanotic line treated with MSH for three days showed a fivefold increase in tyrosinase activity and a twofold increase in tyrosinase mRNA. The melanotic cell line treated with MSH for three days showed a 3.7-fold increase in enzyme activity and an eightfold increase in the abundance of tyrosinase mRNA. Dibutyryl cAMP also stimulated tyrosinase activity and the accumulation of tyrosinase mRNA. The data suggest that MSH, acting through cAMP, promotes an accumulation of tyrosinase mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Wong, G., and Pawelek, J. (1973).Nature (London) New Biol. 241:213–215.

    Google Scholar 

  2. Fuller, B.B., and Lebowitz, J. (1980).J. Cell Physiol. 103:279–287.

    PubMed  Google Scholar 

  3. Pawelek, J., Wong, G., Sansone, M., and Morowitz, J. (1973).Yale J. Biol. Med. 46:430–443.

    PubMed  Google Scholar 

  4. Fuller, B.B., and Viskochil, D.H. (1979).Life Sci. 24:2405–2416.

    PubMed  Google Scholar 

  5. Fuller, B.B., Lunsford, J.B., and Iman, D.S. (1987).J. Biol. Chem. 262:4024–4033.

    PubMed  Google Scholar 

  6. Jimenez, M., Kameyama, K., Maloy, W.L., Tomita, Y., and Hearing, V.J. (1988).Proc. Natl. Acad. Sci. U.S.A. 85:3830–3834.

    PubMed  Google Scholar 

  7. Yamamoto, H., Takeuchi, S., Kudo, T., Makino, K., Nakata, A., Shinoda, T., and Takeuchi, T. (1987).Jpn. J. Genet. 62:271–274.

    Google Scholar 

  8. Kwon, B.S., Wakulchik, M., Haq, A.K., Halaban, R., and Kestler, D. (1988).Biochem. Biophys. Res. Commun. 153:1301–1309.

    PubMed  Google Scholar 

  9. Müller, G., Ruppert, S., Schmid, E., and Schütz, G. (1988).EMBO J. 7:2723–2730.

    PubMed  Google Scholar 

  10. Kwon, B.S., Haq, A.K., Pomerantz, S.H., and Halaban, R. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:7473–7477.

    PubMed  Google Scholar 

  11. Ruppert, S., Müller, G., Kwon, B., and Schütz, G. (1988).EMBO J. 7:2715–2722.

    PubMed  Google Scholar 

  12. Fuller, B.B., Iman, D.S., and Lunsford, J.B. (1988).J. Cell Physiol. 134:149–154.

    PubMed  Google Scholar 

  13. Chu, M.Y., and Fischer, G.A. (1968).Biochem. Pharmacol. 17:753–767.

    PubMed  Google Scholar 

  14. Pomerantz, S.H. (1966).J. Biol. Chem. 241:161–168.

    PubMed  Google Scholar 

  15. Bradford, M. (1976).Anal Biochem. 72:248–252.

    PubMed  Google Scholar 

  16. Ross, J. (1976).J. Mol. Biol. 106:403–420.

    PubMed  Google Scholar 

  17. Gubler, U., and Hoffman, B. (1983).Gene 25:263–269.

    PubMed  Google Scholar 

  18. Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Guide, (Cold Spring Harbor Laboratory, New York).

    Google Scholar 

  19. Norrander, J., Kempe, T., and Messing, J. (1983).Gene 26:101–106.

    PubMed  Google Scholar 

  20. Sanger, F., Nicklen, S., and Coulson, A.R. (1977).Proc Natl. Acad. Sci. U.S.A. 74:5463–5467.

    PubMed  Google Scholar 

  21. Chomczynski, P., and Sacchi, N. (1987).Anal. Biochem. 162:156–159.

    PubMed  Google Scholar 

  22. Fort, P., Marty, L., Piechaczyk, M., Sabrouty, S.E., Dani, C., Jeanteur, P., and Blanchard, J.M. (1985).Nucleic Acids Res. 13:1431–1442.

    PubMed  Google Scholar 

  23. Cleveland, D.W., Lopata, M.A., MacDonald, R.J., Cowan, N.J., Rutter, W.J., and Kirschner, M.W. (1980).Cell 20:95–105.

    PubMed  Google Scholar 

  24. Dexter, T.J., and Bennett, D.C. (1987).Exp. Cell Res. 168:255–264.

    PubMed  Google Scholar 

  25. Lee, T.H., Lee, M.S., and Lu, M. (1972).Endocrinology 91:1180–1188.

    PubMed  Google Scholar 

  26. Vijayan, E., Husain, I., Ramaiah, A., and Madan, N.C. (1982).Arch. Biochem. Biophys. 217:738–747.

    PubMed  Google Scholar 

  27. Wong, G., and Pawelek, J. (1975).Nature 255:644–646.

    PubMed  Google Scholar 

  28. Korner, A., and Pawelek, J. (1977).Nature 267:444–447.

    PubMed  Google Scholar 

  29. Halaban, R., Pomerantz, S.H., Marshall, S., and Lerner, A.B. (1984).Arch. Biochem. Biophys. 230:383–387.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoganson, G.E., Ledwitz-Rigby, F., Davidson, R.L. et al. Regulation of tyrosinase mRNA levels in mouse melanoma cell clones by melanocyte-stimulating hormone and cyclic AMP. Somat Cell Mol Genet 15, 255–263 (1989). https://doi.org/10.1007/BF01534876

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534876

Keywords

Navigation