Skip to main content
Log in

Permittivity and AC conductivity in yttria-stabilized zirconia

Application of a pairs-approximation model and determination of the binding energy of the oxygen vacancies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Alternating current (ac) conductivity and permittivity measurements were carried out on yttriastabilized cubic zirconia, with yttria varying from 9.6 to 25.5 mol%. In this composition range, the dielectric constant measured at 103 Hz decreased from 29.8 to 23.2 as the yttria concentration increased. A plot of the ac conductivity versus frequency exhibited a plateau conductivity (σdc) and a frequency (ω) dependent term σ'(ω). An analysis of σ'(ω) with a suitable theoretical approach based on a pairs-approximation model, resulted in a calculated binding energy for the yttrium-associated oxygen vacancy of 0.29±0.05 eV, which compares favorably with values obtained by different means in previous studies. The experimental determination of the frequency dependence of the conductivity and its analysis provides an effective basis for understanding the ionic conductivity mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. de Dios Solier, M.A. Perez-Jubindo, A. Dominguez-Rodriguez, A.H. Heuer: J. Am. Ceram. Soc.72, 1500 (1989)

    Google Scholar 

  2. V. Butler, C.R.A. Catlow, B.E.F. Fender, Solid State Ionics5, 539 (1981).

    Google Scholar 

  3. F. Buet, J.C. Giuntini, F.E.G. Henn, J.V. Zanchetta: Philos. Mag. B66, 77 (1981).

    Google Scholar 

  4. F.E.G. Henn, S.R. Elliott, J.C. Giuntini: J. Non-Cryst. Solids136, 60 (1991) and references therein

    Google Scholar 

  5. P.A. Smith, L.E. Davis: Electron. Lett.28, 424 (1992).

    Google Scholar 

  6. A.K. Jonsher:Dielectric Relaxation in Solids (Chelsea Dielectric, London (1983).

    Google Scholar 

  7. F.E.G. Henn, J.C. Giuntini, J.V. Zanchetta: Phys. Rev. B48, 573 (1993)

    Google Scholar 

  8. G.A. Samara, J. Appl. Phys.68, 4214 (1960)

    Google Scholar 

  9. D.K. Hohnke: InFast Ion Transport in Solids, Shenoy edn. (Vashista, Mundy 1979) p. 669

    Google Scholar 

  10. M.T. Lanagan, J.K. Yamamoto, A. Bhalla, S.G. Sankar: Mater. Lett.7, 437 (1989).

    Google Scholar 

  11. W.K. Lee, S. Arason-Unger, A.S. Nowick, H.J. Jain: J. Non-Cryst. Solids122, 197 (1990)

    Google Scholar 

  12. W.K. Lee, J.F. Liu, A.S. Nowick: Phys. Rev. Lett.67, 1559 (1991)

    Google Scholar 

  13. S.R. Elliott: Adv. Phys.31, 132 (1987)

    Google Scholar 

  14. A. Hunt: J. Phys. C3, 7831 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henn, F.E.G., Buchanan, R.M., Jiang, N. et al. Permittivity and AC conductivity in yttria-stabilized zirconia. Appl. Phys. A 60, 515–519 (1995). https://doi.org/10.1007/BF01538778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538778

PACS

Navigation