Skip to main content
Log in

Parameters governing the transfer of the genes for thymidine kinase and dihydrofolate reductase into mouse cells using metaphase chromosomes or DNA

  • Published:
Somatic Cell Genetics

Abstract

The conditions necessary to achieve high frequency transfer of the thymidine kinase and dihydrofolate reductase genes from hamster cells into mouse cells were investigated. Of the parameters examined, the length of adsorption time, input gene dosage, and treatment with dimethylsulfoxide (DMSO) were found to significantly alter the transfer frequency using either metaphase chromosomes or purified DNA as the transfer vehicle. With the mouse cell line as a recipient, the optimal adsorption period for DNA or chromosomes from MtxRIII cells was found to vary from 8 to 16 h in those experiments where the recipient cells were subsequently treated with DMSO. Without DMSO, similar frequencies could be obtained by extending the period of adsorption. Increasing the dosage of DNA or chromosomes resulted in an almost linear increase in the number of transformants. The optimal conditions for transfer did not significantly differ for the two genes studied. On the average, the optimal conditions yielded 1.5×103 transformants per 107 recipient cells with chromosomes; with DNA an average of only 60 transformants were observed. In general, DNA transformants grown in the absence of methotrexate were unstable; whereas, under the same conditions about 20% of the transformants from the chromosome experiments were stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. McBride, O. W., and Ozer, H. L. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:1258–1262.

    Google Scholar 

  2. Miller, C. L., and Ruddle, F. H. (1978).Proc. Natl. Acad. Sci. U.S.A. 75:3346–3350.

    Google Scholar 

  3. Willecke, K., Lange, R., Kruger, A., and Reber, T. (1976).Proc. Natl. Acad. Sci. U.S.A. 73:1274–1278.

    Google Scholar 

  4. Wullems, G. J., Van Der Horst, J., and Bootsma, D. (1977).Somat. Cell Genet. 3:281–293.

    Google Scholar 

  5. McBride, O. W., Burch, J. W., and Ruddle, F. H. (1978).Proc. Natl. Acad. Sci. 75:914–918.

    Google Scholar 

  6. Wigler, M., Pellicer, A., Silverstein, S., and Axel, R. (1978).Cell 14:725–731.

    Google Scholar 

  7. Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G., and Chasin, L. (1979).Proc. Natl. Acad. Sci. 76:1373–1376.

    Google Scholar 

  8. Spandidos, D., and Siminovitch, L. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:3480–3484.

    Google Scholar 

  9. Spandidos, D., and Siminovitch, L. (1977).Cell 12:235–242.

    Google Scholar 

  10. Spandidos, D., and Siminovitch, L. (1977).Cell 12:675–682.

    Google Scholar 

  11. Spandidos, D., and Siminovitch, L. (1977).Brookhaven Symposium Biology 29:127–134.

    Google Scholar 

  12. Spandidos, D., and Siminovitch, L. (1978).Nature 271:259–261.

    Google Scholar 

  13. Kit, S., Dubbs, D., Piekarski, L., and Hsu, T. (1963).Exp. Cell Res. 31:291–312.

    Google Scholar 

  14. McBurney, M. W., and Whitmore, G. F. (1974).Cell 2:173–182.

    Google Scholar 

  15. Flintoff, W. F., Davidson, S. V., and Siminovitch, L. (1976).Somat. Cell Genet. 2:245–261.

    Google Scholar 

  16. Stanners, C. P., Elicieri, G. L., and Green, H. (1971).Nature (London) 230:52–54.

    Google Scholar 

  17. Willecke, K., and Ruddle, F. H. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1792–1796.

    Google Scholar 

  18. Burton, K. (1956).Biochem. J. 62:315–323.

    Google Scholar 

  19. Pellicer, A., Wigler, M., Axel, R., and Silverstein, S. (1978).Cell 14:133–141.

    Google Scholar 

  20. Graham, F. L., and van der Eb, A. J. (1973).Virology 52:456–567.

    Google Scholar 

  21. Srinivasan, P. R., and Lewis, W. H. (1980). InIntroduction of Macromolecules into Viable Mammalian Cells (ed.) Baserga, R., Croce, C., and Rovera, G. (Alan R. Liss, New York), Wistar Symposium Series1:27–45.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193:265–275.

    Google Scholar 

  23. Friend, C., Scher, W., Holland, J. G., and Sato, T. (1971).Proc. Natl. Acad. Sci. U.S.A. 68:378–382.

    Google Scholar 

  24. Terada, M., Fried, J., Nudel, V., Rifkind, R. A., and Marks, P. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:248–252.

    Google Scholar 

  25. Scher, W., and Friend, C. (1978).Cancer Res. 38:841–849.

    Google Scholar 

  26. Terada, M., Nudel, U., Fibach, E., Rifkind, R. A., and Marks, P. (1978).Cancer Res. 38:835–840.

    Google Scholar 

  27. Stow, N. D., and Wilkie, N. M. (1976).J. Gen. Virol. 33:447–458.

    Google Scholar 

  28. Norwood, T. H., Ziegler, C. J., and Martin, C. M. (1976).Somat. Cell Genet. 2:263–270.

    Google Scholar 

  29. Lyman, G. H., Preisler, H. D., and Papahadjopoulos, D. (1976).Nature 262:360–363.

    Google Scholar 

  30. Lewis, W. H., and Wright, J. A. (1978).J. Cell. Physiol. 97:87–98.

    Google Scholar 

  31. Lewis, W. H., and Wright, J. A. (1979).Somat. Cell Genet. 5:83–96.

    Google Scholar 

  32. Thompson, L., Harkins, J., and Stanners, C. (1973).Proc. Natl. Acad. Sci. U.S.A. 70:3094–3098.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, W.H., Srinivasan, P.R., Stokoe, N. et al. Parameters governing the transfer of the genes for thymidine kinase and dihydrofolate reductase into mouse cells using metaphase chromosomes or DNA. Somat Cell Mol Genet 6, 333–348 (1980). https://doi.org/10.1007/BF01542787

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01542787

Keywords

Navigation