Skip to main content
Log in

A new vapor-pressure equation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new vapor-pressure equation which has only three adjustable parameters and has a simple form is established consistent with the renormalization-group theory of critical phenomena. The equation presented here is valid over the entire range from the triple point to the critical temperature for a chemically diverse set of compounds and does an excellent job representing data. The new equation also has a great advantage over all of the previous vapor-pressure equations in that it can be used to extrapolate extraordinarily from the usual range in which data are available both to the critical point and to the triple point. Furthermore, it reflects physical properties of the substance based upon the known physical behavior. Satisfactory results are presented for 44 simple, quantum, hydrobonding, nonpolar and polar substances, refrigerants, associating compounds, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Antoine,C. R. Acad. Sci. 107:681 (1888).

    Google Scholar 

  2. A. A. Frost and D. R. Kalkwarf,J. Chem. Phys. 21:264 (1953).

    Article  ADS  Google Scholar 

  3. L. Riedel,Chem. Eng. Tech. 26:83 (1954).

    Google Scholar 

  4. D. G. Miller,J. Phrs. Chem. 68:1399 (1964).

    Article  Google Scholar 

  5. R. E. Thek and L. I. Stiel,AIChE J. 12:599 (1966).

    Article  Google Scholar 

  6. R. D. Goodwin,J. Res. Natl. Bur. Stand. 73A:487 (1969).

    Article  Google Scholar 

  7. D. Ambrose, J. F. Counsell, and A. J. Davenport,J. Chem. Thermodyn. 2:283 (1970).

    Article  Google Scholar 

  8. W. Wagner,Cryogenics 13:470 (1973).

    Article  ADS  Google Scholar 

  9. L. H. Thomas,Chem. Eng. J. 11:191 (1976).

    Article  Google Scholar 

  10. Z. Xu,Ind. Eng. Chem. Process Des. Dev. 23:7 (1984).

    Article  Google Scholar 

  11. A. Vetere,Chem. Eng. J. 32:77 (1986).

    Article  Google Scholar 

  12. G. A. Iglesias-Silva, J. C. Holste, P. T. Eubank, K. N. Marsh, and K. R. Hall,AICIZE J. 33:1550 (1987).

    Article  Google Scholar 

  13. J. M. H. Levelt Sengers, R. Hocken, and J. V. Sengers,Phys. Today 30 (12):42 (1977).

    Article  ADS  Google Scholar 

  14. R. B. Grifliths,J. Chem. Phys. 43:1958 (1965).

    Article  ADS  Google Scholar 

  15. D. Z. Albert,Phys. Rev. B 25:4810 (1982).

    Article  ADS  Google Scholar 

  16. P. C. Albright, T. J. Edwards, Z. Y. Chen, and J. V. Sengers,J. Chem. Phys. 87:1717 (1987).

    Article  ADS  Google Scholar 

  17. R. Plank and L. Riedel,Ingenieur-Arch. XVI Band 255 (1948).

  18. W. Wagner, J. Ewers, and W. Pentermann,J. Chem. Thermodyn. 8:1049 (1976).

    Article  Google Scholar 

  19. D. Ambrose, D. J. Hall, D. A. Lee, G. B. Lewis, and C. J. Mash,J. Chem. Thermodyn. 11:1089 (1979).

    Article  Google Scholar 

  20. B. Armstrong,J. Chem. Eng. Data 26:168 (1981).

    Article  Google Scholar 

  21. E. Fernandez-Fassnacht and F. del Rio,J. Chem. Thermodyn. 16:469 (1984).

    Article  Google Scholar 

  22. W. Duschek, R. Kleinrahm, and W. Wagner,J. Chem. Thermodyn. 22:841 (1990).

    Article  Google Scholar 

  23. R. Kleinrahm and W. Wagner,J. Chem. Thermodyn. 18:739 (1986).

    Article  Google Scholar 

  24. G. F. Carruth and R. Kobayashi,J. Chem. Eng. Data 18:115 (1973).

    Article  Google Scholar 

  25. D. R. Douslin and R. H. Harrison,J. Chem. Thermodyn. 5:491 (1973).

    Article  Google Scholar 

  26. A. K. Pal, G. A. Pope, Y. Arai, N. F. Carnahan, and R. Kobayashi,J. Chem. Eng. Data 21:394 (1976).

    Article  Google Scholar 

  27. ASHRAE Fundamental Handbook (1985).

  28. J. D. Kemp and C. J. Egan,J. Am. Chem. Soc. 60:1521 (1938).

    Article  Google Scholar 

  29. H. Kratzke,J. Chem. Thernrodyn. 12:305 (1980).

    Article  Google Scholar 

  30. J. L. Flebbe, D. A. Barclay, and D. B. Manley,J. Chem. Eng. Data 27:405 (1982).

    Article  Google Scholar 

  31. L. A. Weber,J. Chem. Eng. Data 34:171 (1989).

    Article  Google Scholar 

  32. D. Ambrose and I. J. Lawrenson,Process Technol. Int. 17:968 (1972).

    Google Scholar 

  33. D. Ambrose, B. E. Broderick, and R. Townsend,J. Chem. Soc. A 633 (1967).

  34. D. Ambrose,J. Chem. Thermodyn. 13:1161 (1981).

    Article  Google Scholar 

  35. P. Bender, G. T. Furukawa, and J. R. Hyndman,Ind. Eng. Chem. 44:387 (1952).

    Article  Google Scholar 

  36. A. W. Jaekowski,J. Chem. Thernrodyn. 6:49 (1974).

    Article  Google Scholar 

  37. D. W. Scott and A. G. Osborn,J. Phys. Chem. 83:2714 (1979).

    Article  Google Scholar 

  38. R. D. McCarty and V. D. Arp,Adv. Cryogen. Eng. 35:1465 (1990).

    Google Scholar 

  39. L. Yurttas, J. C. Holste, K. R. Hall, B. E. Gammon, and K. N. Marsh,Fluid Phase Equil. 59:217 (1990).

    Article  Google Scholar 

  40. E. Fernandez-Fassnacht and F. del Rio,Cryogenics 25:204 (1985).

    Article  ADS  Google Scholar 

  41. G. Handel, R. Kleinrahm, and W. Wagner,J. Chem. Thernrodyn. 24:697 (1992).

    Article  Google Scholar 

  42. M. Hongo, M. Kusunoki, H. Matsuyama, T. Takagi, K. Mishima, and Y. Arai,J. Chem. Eng. Data 35:414 (1990).

    Article  Google Scholar 

  43. R. Kohlen, H. Kratzke, and Muller,J. Chem. Thermodyn. 17:1141 (1985).

    Article  Google Scholar 

  44. P. F. Malbrunot, P. A. Meunier, G. M. Scatena, W. H. Mears, K. P. Murphy, and J. V. Sinka,J. Chem. Eng. Data 13:16 (1968).

    Article  Google Scholar 

  45. M. J. Mastroianni, R. F. Stahl, and P. N. Sheldon,J. Chem. Eng. Data 23:113 (1978).

    Article  Google Scholar 

  46. L. A. Weber,J. Chem. Eng. Data 35:237 (1990).

    Article  Google Scholar 

  47. C. C. Piao, H. Sato, and K. Watanabe,J. Chem. Eng. Data 36:398 (1991).

    Article  Google Scholar 

  48. T. Tamatsu, H. Sato, and K. Watanabe,J. Chem. Eng. Data 37:216 (1992).

    Article  Google Scholar 

  49. Y. Maezawa, H. Sato, and K. Watanabe,J. Chem. Eng. Data 36:148 (1991).

    Article  Google Scholar 

  50. N. Yada, K. Kumagal, T. Tamatsu, H. Sato, and K. Watanabe,J. Chem. Eng. Data 36:12 (1991).

    Article  Google Scholar 

  51. J. W. Magee and J. B. Howley,Int. J. Refrig. 15:362 (1992).

    Article  Google Scholar 

  52. A. R. H. Goodwin, D. R. Defibaugh, and L. A. Weber,Int. J. Thermophys. 13:837 (1992).

    Article  ADS  Google Scholar 

  53. L. A. Weber,Int. J. Thermophys. 10:617 (1989).

    Article  ADS  Google Scholar 

  54. D. P. Wilson and R. S. Basu,ASHRAE Trans. 94:2095 (1988).

    Google Scholar 

  55. H. D. Baehr and R. Tillner-Both,J. Chem. Thermophys. 23:1063 (1991).

    Article  Google Scholar 

  56. Y. Higashi, M. Ashizawa, Y. Kabata, T. Majima, M. Uematsu, and K. Watanabe,Int. J. JSME 30:1106 (1987).

    Article  Google Scholar 

  57. Z. Y. Zhao, J. M. Yin, and L. C. Tan,Fluid Phase Equil. 80:191 (1992).

    Article  Google Scholar 

  58. H. Sato, M. Uematsu, K. Watanabe, A. Saul, and W. Wagner,J. Phys. Chem. Ref. Data 17:1439 (1988).

    Article  ADS  Google Scholar 

  59. H. D. Baehr, H. Garnjost, and R. Pollak,J. Chem. Thermodyn. 8:113 (1976).

    Article  Google Scholar 

  60. J. P. McCullough, D. W. Scott, R. E. Pennington, I. A. Hossenlopp, and G. Waddington,J. Am. Chem. Soc. 76:4791 (1954).

    Article  Google Scholar 

  61. H. A. Berman and E. D. West,J. Chem. Eng. Data 12:197 (1967).

    Article  Google Scholar 

  62. H. D. Baehr, F. Klobasa, and R. Scharf,Int. J. Thermophys. 10:577 (1989).

    Article  ADS  Google Scholar 

  63. A. Cooney and K. W. Morcom,J. Chem. Thermodyn. 20:1469 (1988).

    Article  Google Scholar 

  64. H. F. Gibbard and J. L. Creek,J. Chem. Eng. Data 19:308 (1974).

    Article  Google Scholar 

  65. D. Ambrose, C. H. S. Sprake, and R. Townsend,J. Chem. Thermodyn. 7:185 (1975).

    Article  Google Scholar 

  66. D. Ambrose and C. H. S. Sprake,J. Chem. Thermodyn. 2:631 (1970).

    Article  Google Scholar 

  67. D. Ambrose, J. H. Ellender, C. H. S. Sprake, and R. Townsend,J. Chem. Thermodyn. 9:735 (1977).

    Article  Google Scholar 

  68. A. E. Potter Jr. and H. L. Ritter,J. Phys. Chem. 58:1040 (1954).

    Article  Google Scholar 

  69. F. C. Vidaurri,J. Chem. Eng. Data 20:349 (1975).

    Article  Google Scholar 

  70. K. P. Murphy,J. Chem. Eng. Data 9:259 (1964).

    Article  Google Scholar 

  71. D. Ambrose, C. H. S. Sprake, and R. Townsend,J. Chem. Thermodyn. 6:693 (1974).

    Article  Google Scholar 

  72. D. Ambrose, C. H. S. Sprake, and R. Townsend,J. Chem. Thermodyn. 4:247 (1972).

    Article  Google Scholar 

  73. M. B. Ewing and A. R. H. Goodwin,J. Chem. Thermodyn. 23:1163 (1991).

    Article  Google Scholar 

  74. C. B. Willingham, W. J. Taylor, J. M. Pignocco, and F. D. Rossini,J. Res. Natl. Bur. Stand. 35:219 (1945).

    Article  Google Scholar 

  75. J. A. Hugill and M. L. McGlashan,J. Chem. Thermodyn. 10:95 (1978).

    Article  Google Scholar 

  76. D. Ambrose and J. H. Ellender,J. Chem. Thermodyn. 13:901 (1981).

    Article  Google Scholar 

  77. J. M. H. Levelt Sengers, W. L. Greer, and J. V. Sengers,J. Phys. Chem. Ref. Data 5:1 (1976).

    Article  ADS  Google Scholar 

  78. M. R. Moldover,Phys. Rev. A 31:1022 (1985).

    Article  ADS  Google Scholar 

  79. M. R. Moldover and J. C. Rainwater,J. Chem. Phys. 88:7772 (1988).

    Article  ADS  Google Scholar 

  80. J. C. Rainwater and J. J. Lynch,Fluid Phase Equil. 52:91 (1989).

    Article  Google Scholar 

  81. H. W. Xiang, Ph.D. thesis (Department of Power Machinery Engineering, Xi'an Jiaotong University, Xi'an, 1994).

  82. D. Ambrose,J. Chem. Thermodyn. 10:765 (1978).

    Article  Google Scholar 

  83. D. Ambrose and N. C. Patel,J. Chem. Thermodyn. 16:459 (1984).

    Article  Google Scholar 

  84. J. D. Chase,Chem. Eng. Progr. 80:63 (1984).

    Google Scholar 

  85. J. McGarry,Ind. Eng. Chem. Process Des. Dev. 22:313 (1983).

    Article  Google Scholar 

  86. R. C. Reid, J. M. Prausnitz, and B. E., Poling,The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987).

    Google Scholar 

  87. B. D. Smith and R. Srivastava,Thermodynamic Data for Pure Compounds (Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, H.W., Tan, L.C. A new vapor-pressure equation. Int J Thermophys 15, 711–727 (1994). https://doi.org/10.1007/BF01563795

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01563795

Key words

Navigation