Skip to main content
Log in

Isolation and characterization of a marine methanogenic bacterium from the biofilm of a shiphull in Los Angeles harbor

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A marine mesophilic, irregular coccoid methanogen, which shows close resemblance toMethanococcus sp., was isolated from the biofilm of shiphulls docked in Los Angeles harbor. Hydrogen plus carbon dioxide or formate served as substrates for methanogenesis in a mineral salt medium. The isolate did not use acetate and methanol as sole source of carbon and energy. The organism had an optimal pH range of 6.8–7.0 and a temperature optimum of 37°C. Elevated levels of sodium chloride were required for optimum growth. Optimum levels of total sulfide and magnesium chloride for growth were 1.0mm and 10mm respectively. The isolate used ammonia as nitrogen source. The concentration of 30mm ammonium chloride supported maximum growth of the isolate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Baasbecking LGM, Kaplan IR, Moore D (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials. J Geol 68:243–284

    Google Scholar 

  2. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane sulfonic acid (HS-CoM) dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    PubMed  Google Scholar 

  3. Bauchop T, martucci RW (1968) Ruminant like digestion of the langur monkey. Science 161:698–700

    PubMed  Google Scholar 

  4. Beijer WH (1952) Methane fermentation in the rumen cattle. Nature 170:5766

    Google Scholar 

  5. Belay N, Daniels L (1987) Production of ethane, ethylene and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl Environ Microbiol 53:1604–1610

    Google Scholar 

  6. Belay N, Daniels L (1990) Elemental metals as electron sources for biological methane formation from CO2. Antonie Van Leeuwenhoek 57:1–7

    PubMed  Google Scholar 

  7. Belay N, Johnson R, Rajaogopal BS, DeMacario EC, Daniels L (1988) Methanogenic bacteria from human dental plaque. Appl Environ Microbiol 54:600–603

    PubMed  Google Scholar 

  8. Belay N, Rajagopal BS, Daniels L (1990a) Effects of alkyltin compounds on hydrogen oxidizing anaerobic bacteria. Curr Microbiol 20:329–334

    Google Scholar 

  9. Belay N, Jung KY, Rajagopal BS, Kremer JD, Daniels L (1990b) Nitrate as a sole nitrogen source forMethanococcus thermolithotrophicus and its effect on growth of several methanogenic bacteria. Curr Microbiol 21:193–198

    Google Scholar 

  10. Boopathy R, Daniels L (1991) Pattern of organotin inhibition of methanogenic bacteria. Appl Environ Microbiol 57:1189–1193

    PubMed  Google Scholar 

  11. Bracke JW, Cruden DL, Markovetz AJ (1979) Intestinal microbial flora of the american cockroach,Periplaneta americana L. Appl Environ Microbial 38:945–955

    Google Scholar 

  12. Chameides WL (1983) Increasing atmospheric methane. Nature 301:568

    Google Scholar 

  13. Corder RE, Hooks LA, Larkin JM, Frea JI (1983) Isolation and characterization of two new methane producing cocci:Methanogenium olentangyi, sp., nov. andMethanococcus deltae, sp., nov. Arch Microbiol 51:28–32

    Google Scholar 

  14. Daniels L, Belay N, Rajogopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl Environ Microbiol 51:703–709

    PubMed  Google Scholar 

  15. Daniels L, Belay N, Rajagopal BS, Weimer PJ (1987) Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511

    Google Scholar 

  16. Donelen MJ (1974) Digestion in some species of scarabaeid larvae—preliminary conclusions. Australian Conference on the ecology of grassland invertebrates, Armidale, NSW. Abstract pp 39–40

  17. Ehhalt DH (1974) The atmospheric cycle of methane. Tellus 26:58–70

    Google Scholar 

  18. Ferguson TJ, Mah RA (1983) Isolation and characterization of an H2 oxidizing thermophilic methanogen. Appl Environ Microbiol 45:265–274

    Google Scholar 

  19. Gorden RW, Fliermans (1980) Methanogenesis in thermal reactor effluents. J Thermal Biol 5:169–177

    Google Scholar 

  20. Huber J, Thomm M, Konig H, Thies G, Stetter KO (1982)Methanococcus thermolithotrophicus, a novel thermophilic lithotropic methanogen. Arch Microbiol 132:47–50

    Google Scholar 

  21. Jones WJ, Whitman WB, Fields RD, Wolfe RS (1983) Growth and plating efficiency ofMethanococci on agar media. Appl Environ Microbiol 46:220–226

    Google Scholar 

  22. Kemp CW, Curtis MA, Robrish SA, Bowen WH (1983) Biogenesis of methane in primate dental plaque. FEBS Lett 155:61–64

    PubMed  Google Scholar 

  23. Leigh JA, Jones WJ (1983) A new extremely thermophilic methanogen from a submarine hydrothermal vent. Annual meeting, American Society of Microbiology, Abstract 117:142

    Google Scholar 

  24. Miller TL, Wolin MJ (1983) Oxidation of hydrogen and reduction of methanol to methane is the sole energy source for a methanogen isolated from a human faeces. J Bacteriol 153:1051–1055

    PubMed  Google Scholar 

  25. Miller TL, Wolin MJ, DeMacario CE, Macario AJL (1982) Isolation ofMethanobrevibacter smithii from human faeces. Appl Environ Microbiol 43:227–232

    PubMed  Google Scholar 

  26. Mukhopadhyay B, Purwantini E, deMacario EC, Daniels L (1991) Characterization of aMethanosarcina strain isolated from goat feces, and that grows on H2−CO2 only after adaptation. Curr Microbiol 23:165–173

    Google Scholar 

  27. Nottingham PM, Hungate RE (1968) Isolation of methanogenic bacteria from faeces of man. J Bacteriol 96:2178–2179

    PubMed  Google Scholar 

  28. Oremland RS (1979) Methanogenic activity in plankton samples and fish intestines: a mechanism for in situ methanogenesis in oceanic surface waters. Limnol Oceanogr 24:1136–1141

    Google Scholar 

  29. Paterek R, Smith PH (1983) Isolation of a halophilic methanogenic bacterium from the sediments of Great Salt lake and a San Francisco Bay saltern. Annual meeting, American Society of Microbiology, Abstract 12:140

    Google Scholar 

  30. Paynter MJB, Hungate RE (1968) Characterization ofMethanobacterium mobilis sp. nov., isolated from the bovine rumen. J Bacteriol 95:1943–1951

    PubMed  Google Scholar 

  31. Rajagopal BS, LeGall J (1989) Utilization of cathodic hydrogen by hydrogen oxidizing bacteria. Appl Microbiol Biotechnol 31:406–412

    Google Scholar 

  32. Rajagopal BS, Belay N, Daniels L (1988) Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Ecol 53:153–158

    Google Scholar 

  33. Rasmussen RA, Khalil MAK (1983) Global production of methane. Nature 301:700–702

    Google Scholar 

  34. Rivard CJ, Smith PH (1982) Isolation and characterization of a thermophilic, marine, methanogenic bacterium,Methanogenium thermophilicum sp. nov. Int J Syst Bacteriol 32:430–436

    Google Scholar 

  35. Smith PH, Hungate RE (1958) Isolation and characterization ofMethanobacterium ruminantium n. sp. J Bacteriol 75:713–718

    PubMed  Google Scholar 

  36. Von Wolzogen Kuhr CAH, Van der, Vlught LS (1934) The graphitization of cast iron as an electrochemical process in anaerobic soil. Water 18:147–165

    Google Scholar 

  37. Ward DM (1978) Thermophilic methanogenesis in a hot spring algal-bacterial mat. Appl Environ Microbiol 35:1019–1026

    PubMed  Google Scholar 

  38. Ward DM, Olsen GJ (1980) Terminal processes in the anaerobic degradation of an algal-bacterial mat in a high sulfate hot spring. Appl Environ Microbiol 40:67–74

    Google Scholar 

  39. William RT, Crawford RL (1983) Isolation of an acid tolerant methanogen from an acid peat land. Annual meeting, American Society of Microbiology Abstract 14:140

    Google Scholar 

  40. Yu IK, Hungate RE (1983) Isolation and characterization of an obligately halophilic, methanogenic bacterium. Annual meeting, American Society of Microbiology, Abstract 11:139

    Google Scholar 

  41. Zeikus JG, Ben-Bassat AD, Hegge PW (1980) Microbiology of methanogenesis in thermal volcanic environments. J Bacteriol 143:432–440

    PubMed  Google Scholar 

  42. Zinder S, Cardwell S, Anguish T (1983) Ecology of methanogens in a thermophilic anaerobic digester. Annual meeting, American Society of Microbiology, Abstract 143:146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boopathy, R., Daniels, L. Isolation and characterization of a marine methanogenic bacterium from the biofilm of a shiphull in Los Angeles harbor. Current Microbiology 25, 157–164 (1992). https://doi.org/10.1007/BF01571024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01571024

Keywords

Navigation