Skip to main content
Log in

Some properties of the multidimensional complex cepstrum and their relationship to the stability of multidimensional systems

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Conditions are obtained for the cepstrum of anl 1 sequence having arbitrary support on theM-dimensional lattice to exist also as anl 1 sequence with arbitrary support. These conditions are used to show that the cepstrum of a sequence with support on a half-space will, when it exists, also have support on the same half-space. This result is used, in turn, to describe the support of the cepstrum of a sequence with bounded support on a half-space. The relationship between the existence of the cepstrum and bounded-input, bounded-output (BIBO) stability for all three of these cases is considered. Finally, the derivatives of the inversion operator, the homomorphic transform operator, and its inverse are calculated. These results are also useful in the one-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Childers, D. P. Skinner, and R. C. Kemerait, The cepstrum, a guide to processing,Proc. IEEE,65, 1428–1443, 1977.

    Google Scholar 

  2. P. Whittle, On stationary processes in the plane,Biometrika,41, 443–449, 1954.

    Google Scholar 

  3. M. P. Ekstrom and J. W. Woods, Two-dimensional spectral factorization with applications in recursive digital filtering,IEEE Trans. Acoust. Speech Signal Process.,24, 115–127, 1976.

    Google Scholar 

  4. D. M. Goodman and M. P. Ekstrom, Multidimensional spectral factorization and unilateral autoregressive models,IEEE Trans. Automat. Control,25, 258–262, 1980.

    Google Scholar 

  5. P. Pistor, Stability criterion for recursive filters,IBM J. Res. Develop., 59–71, 1974.

  6. M. Ahmadi and R. A. King, Stability criterion forN-dimensional zero-phase recursive digital filters,Proc IEEE,65, 893–898, 1977.

    Google Scholar 

  7. M. P. Ekstrom and R. E. Twogood, Stability test for 2-d recursive digital filters using the complex cepstrum,Proceedings of the 1977 IEEE International Conference on Acoustics, Speech and Signal Processing, Hartford, CT, pp. 535–538, 1977.

  8. M. P. Ekstrom, R. E. Twogood, and J. W. Woods, Two dimensional recursive filter design—a spectral factorization approach,IEEE Trans. Acoust. Speech Signal Processing.,28, 16–28, 1980.

    Google Scholar 

  9. D. E. Dudgeon, The existence of cepstra for two-dimensional polynomials,IEEE Trans. Acoust. Speech Signal Process.,23 242–243, 1975.

    Google Scholar 

  10. D. E. Dudgeon, The computation of two-dimensional cepstra,IEEE Trans. Acoust. Speech Signal Process.,25, 476–484, 1977.

    Google Scholar 

  11. D. M. Goodman,N-dimensional linear systems: determination of impulse response support, computing cepstra, and recursibility issues,Proceedings of the Asilomar Conference of Circuits, Systems, and Computers, Pacific Grove, CA, pp. 93–98, 1979.

  12. W. Rudin,Real and Complex Analysis, 2nd edn, McGraw-Hill, New York, 1974.

    Google Scholar 

  13. D. Goodman, Some stability properties of two-dimensional linear shift-invariant digital filters,IEEE Trans. Circuits and Systems,24, 201–208, 1977.

    Google Scholar 

  14. K. R. Davidson and M. Vidyasagar, Causal invertibility and stability of asymmetric half-plane digital filters,IEEE Trans. Acoust. Speech Signal Process.,31, 195–201, 1983.

    Google Scholar 

  15. D. S. K. Chan, The structure of recursible multidimensional discrete systems,IEEE Trans Automat. Control,25, 663–673, 1980.

    Google Scholar 

  16. A. E. Taylor and D. C. Lay,Introduction to Functional Analysis, Wiley, New York, 1980.

    Google Scholar 

  17. W. Rudin,Functional Analysis, McGraw-Hill, New York, 1973.

    Google Scholar 

  18. A. Browder,Introduction to Function Algebras, Benjamin, New York, 1969.

    Google Scholar 

  19. T. W. Gamelin,Uniform Algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969.

    Google Scholar 

  20. E. L. Stout,The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown, NY, 1971.

    Google Scholar 

  21. J. H. Justice and J. L. Shanks, Stability criterion forn-dimensional digital filters,IEEE Trans. Automat. Control,18, 284–286, 1973.

    Google Scholar 

  22. M. Vidyasagar and N. K. Bose, Input-output stability of linear systems defined over measure spaces,Proceedings of the 1975 Midwest Symposium on Circuits and Systems, Montreal, pp. 394–397, 1975.

  23. E. W. Kamen and W. L. Green, Asymptotic stability of linear difference equations defined over a commutative Banach algebra,J. Math. Anal. Appl.,75, 584–601, 1980.

    Google Scholar 

  24. N. K. Bose,Applied Multidimensional Systems Theory, pp. 161–164, Van Nostrand Reinhold, New York, 1982.

    Google Scholar 

  25. P. Lévy, ‘Sur la convergence absolue des séries de Fourier,’Compositio Math.,1, 1–14, 1934.

    Google Scholar 

  26. R. A. Decarlo, J. Murray, and R. Saeks, Multivariable Nyquist theory,Internat. J. Control,25, 657–675, 1977.

    Google Scholar 

  27. W. Rudin,Function Theory in Polydiscs, Benjamin, New York, 1969.

    Google Scholar 

  28. K. Knopp,Theory of Functions, Part II, Dover, New York, 1947.

    Google Scholar 

  29. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables,Acta Math.,99, 165–202, 1958.

    Google Scholar 

  30. W. Rudin,Fourier Analysis on Groups, Interscience, New York, 1962.

    Google Scholar 

  31. R. E. Seviora, Causality and stability in two-dimensional digital filtering,Proceedings of the Asilomar Conference on Circuits, Systems, and Computers, Pacific Grove, CA, pp. 285–289, 1973.

  32. H. L. Van Trees,Detection, Estimation, and Modulation Theory, Part I, Wiley, New York, 1968.

    Google Scholar 

  33. A. N. Michel and C. J. Herget,Mathematical Foundations in Engineering and Science: Algebra and Analysis, Prentice Hall, Englewood Cliffs, NJ, 1981.

    Google Scholar 

  34. L. A. Lusternik and V. J. Sobolev,Elements of Functional Analysis, Ungar, New York, 1961.

    Google Scholar 

  35. K. J. åström, Maximum likelihood and prediction error methods,Automatica,16, 551–574, 1980.

    Google Scholar 

  36. P. E. Gill, W. Murray, and M. H. Wright,Practical Optimization, Academic Press, New York, 1981.

    Google Scholar 

  37. D. M. Goodman and D. G. Dudley, On the use of output error models for identifying electromagnetic transients,Circuits, Systems Signal Process. (to be submitted).

  38. D. Raghuramireddy and R. Unbehauen, Multidimensional homomorphic deconvolution systems,Proceedings of the 24th Conference on Decision and Control, Ft. Lauderdale, pp. 1606–1612, 1985.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, D.M. Some properties of the multidimensional complex cepstrum and their relationship to the stability of multidimensional systems. Circuits Systems and Signal Process 6, 3–30 (1987). https://doi.org/10.1007/BF01599003

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01599003

Keywords

Navigation