Skip to main content
Log in

Realizations of nonlinear systems

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Given the Volterra series representation of a single input, single output nonlinear system, we examine conditions on the Volterra kernels that determine if the system is in some sense equivalent to a linear system. The systems considered herein are known as “feedback linearizable” systems. Feedback linearizable systems are usually discussed in terms of their state-space representations. A key result relates the Volterra series description of a feedback linearizable system to its state-space description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Wiener.Nonlinear Problems in Random Theory. Technology Press, M.I.T., and Wiley, New York, 1958.

    Google Scholar 

  2. Y. W. Lee. Contributions of Norbert Wiener to linear theory and nonlinear theory in engineering. InSelected Papers of Norbert Wiener. SIAM and M.I.T. Press, Cambridge, MA, 1964.

    Google Scholar 

  3. Y. W. Lee and M. Schetzen. Measurement of the Wiener kernels of a nonlinear system by cross-correlation.Internat. J. Control,2(3):237–254, 1965.

    Google Scholar 

  4. M. Schetzen. Determination of optimum nonlinear systems for generalized error criteria based on the use of gate functions.IEEE Trans. Inform. Theory,11(1):117–125, 1965.

    Google Scholar 

  5. M. Schetzen. Measurement of the kernels of a nonlinear system of finite order.Internat. J. Control,1(3):251–263, 1965.

    Google Scholar 

  6. M. Schetzen. A theory of nonlinear system identification.Internat. J. Control,20(4):577–592, 1974.

    Google Scholar 

  7. M. Schetzen.The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York, 1980.

    Google Scholar 

  8. M. Schetzen. Nonlinear system modeling based on the Wiener theory.Proc. IEEE,69(12):1557–1573, 1987.

    Google Scholar 

  9. S. Boyd, Y. S. Tang, and L. O. Chua. Measuring Volterra kernels.IEEE Trans. Circuits and Systems,30(8):571–577, 1983.

    Google Scholar 

  10. P. E. Crouch. Dynamical realizations of finite Volterra series.SIAM J. Control Optim.,19:177–202, 1981.

    Google Scholar 

  11. G. Meyer and L. Cicolani. A formal structure for advanced automatic flight control systems. Technical Report TN D-7940, NASA, 1975.

  12. G. Meyer and L. Cicolani. Application of nonlinear system inverses to automatic flight control design-system concepts and flight evaluations. In P. Kent, editor,AGARDograph 251 on Theory and Applications of Optimal Control in Aerospace Systems, reprinted by NATO, 1980.

  13. R. W. Brockett. Feedback invariants for nonlinear systems.Proc. of IFAC Congress, pp. 1115–1120, 1978.

  14. B. Jakubczyk and W. Respondek. On linearization of control systems.Bull. Acad. Polon. Sci. Math. Astronom. Phys.,28:517–522, 1980.

    Google Scholar 

  15. R. Sommer. Control design for multivariable non-linear time varying systems.Internat. J. Control,31(5):883–891, 1980.

    Google Scholar 

  16. R. Su. On the linear equivalents of nonlinear systems.Systems Control Lett.,2(l):48–52, 1982.

    Google Scholar 

  17. L. R. Hunt, R. Su, and G. Meyer. Design for multi-input non-linear systems. In R. W. Brockett, R. S. Millman, and H. J. Sussmann, editors,Differential Geometric Control Theory, volume 27, pp. 268–298. Birkhäuser, Boston, 1983.

    Google Scholar 

  18. L. R. Hunt and R. Su. Control of nonlinear time-varying systems.Proc. 20th IEEE Conf. on Decision and Control, pp. 558–563, 1981.

  19. A. J. Krener, A. Isidori, and W. J. Respondek. Partial and robust linearization by feedback.Proc. 20th IEEE Conf. on Decision and Control, pp. 126–130, 1983.

  20. R. Su and L. R. Hunt. Canonical expansions for nonlinear systems.IEEE Trans. Automat. Control,31:670–673, 1986.

    Google Scholar 

  21. G. A. Smith and G. Meyer. Total aircraft flight control system balanced open- and closed-loop with dynamic trimmaps.Proc. 3rd Avionics Conf., 1979.

  22. G. A. Smith and G. Meyer, Applications of the concept of dynamic trim control to automatic landing of carrier aircraft. TP 1512, NASA, 1979.

  23. W. R. Wehrend, Jr. Pilot control through the TAFCOS automatic flight control system. TM 81152, NASA, 1979.

  24. W. R. Wehrend, Jr. and G. Meyer. Flight tests of the total automatic control system, TAFCOS, concept on a DHC-6 twin otter aircraft. TP 1513, NASA, 1980.

  25. G. Meyer. The design of exact nonlinear model followers.Proc. Joint Automatic Control Conf., FA3A, 1981.

  26. G. Meyer, R. Su, and L. R. Hunt. Application of nonlinear transformations to automatic flight control.Automatica,20(1):103–107, 1984.

    Google Scholar 

  27. J. Baillieul, G. Meyer, L. R. Hunt, and R. Su. Tutorial workshop on control design for nonlinear systems.24th IEEE Conf. on Decision and Control, 1985.

  28. T. J. Tarn, A. K. Bejczy, A. Isidori, and Y. Chen. Nonlinear feedback in robot arm control.Proc. 23rd Conf. on Decision and Control, pp. 736–751, 1984.

  29. T. A. W. Dwyer, III. Design of an exact nonlinear model follower for the control of large angle rotational manuevers.Proc. 22nd IEEE Conf. on Decision and Control, pp. 803–807, 1983.

  30. T. A. W. Dwyer, III. Exact nonlinear control of large angle rotational manuevers.IEEE Trans. Automat. Control,29(9):769–774, 1984.

    Google Scholar 

  31. H. Hermes and D. Hogenson. The explicit synthesis of stabilizing (time optimal) feedback controls for the attitude control of a rotating satellite.Appl. Math. Comput.,16(9):229–240, 1985.

    Google Scholar 

  32. M. S. Fadali, M. N. Karim, and T. A. W. Dwyer, III. Computer control of zymononas mobilis fermentation using nonlinear decoupling.Proc. ISMM Conf. on Mini and Microcomputers in Control, Filtering, and Signal Processing, 1984.

  33. C. Kravaris and C. B. Chung. Nonlinear state feedback synthesis by global input/output linearization.Proc. American Control Conf., pp. 997–1005, 1986.

  34. A. A. Alsop and T. F. Edgar. Nonlinear heat exchanger control through the use of partially linearized control variables.Proc. American Control Conf., pp. 1006–1013, 1986.

  35. J. C. Kanton. Stability of state feedback transformations for nonlinear systems—some practical considerations.Proc. American Control. Conf., pp. 1014–1016, 1986.

  36. M. I. Spong, R. Marino, S. Persada, and D. G. Taylor. Feedback linearizing controls of switched reluctance motors.IEEE Trans. Automat. Control,32(5):371–374, 1987.

    Google Scholar 

  37. I. J. Ha, A. K. Tugcu, and N. M. Boustany. Feedback linearizing control of vehicle longitudinal acceleration.IEEE Trans. on Automat. Control, 1989.

  38. W. J. Rugh. An input-output characterization for linearization by feedback.Systems Control Lett.,4:227–229, 1984.

    Google Scholar 

  39. I. W. Sandberg. Expansions for nonlinear systems.Bell Syst. Tech. J.,61(2):159–200, 1982.

    Google Scholar 

  40. I. W. Sandberg. Volterra expansions for time-varying nonlinear systems.Bell Syst. Tech. J.,61(2):201–226, 1982.

    Google Scholar 

  41. I. W. Sandberg. Volterra-like expansions for solutions of nonlinear integral equations and nonlinear differential equations.IEEE Trans. Circuits and Systems,30(2):68–77, 1983.

    Google Scholar 

  42. C. Lesiak and A. J. Krener. The existence and uniqueness of Volterra series for nonlinear systems.IEEE Trans. Automat. Control,23:1090–1095, 1978.

    Google Scholar 

  43. M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarriguer. An algebraic approach to nonlinear functional expansions.IEEE Trans. Circuits and Systems,30(8):544–570, 1983.

    Google Scholar 

  44. L. R. Hunt, M. Luksic, and R. Su. Nonlinear input-output systems. In V. Lakshmikantham, editor,Nonlinear Analysis and Applications, pp. 261–266. Marcel Dekker, New York, 1987.

    Google Scholar 

  45. H. G. Lee, A. Arapostathis, and S. I. Marcus. On the linearization of discrete time systems.Proc. American Control Conf., 1987.

  46. A. J. Krener and A. Isidori. Linearization by output injection and nonlinear observers.Systems Control Lett.,3:46–52, 1983.

    Google Scholar 

  47. R. A. Gabel and R. A. Roberts.Signals and Linear Systems, 3rd edn. Wiley, New York, 1987.

    Google Scholar 

  48. S. M. Kay.Modern Spectral Estimation, Theory and Application. Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, 1988.

    Google Scholar 

  49. S. Lawrance Marple, Jr.Modern Spectral Estimation. Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  50. S. Wolfram.Mathematica, a System for Doing Mathematics by Computer. Addison-Wesley, Reading, MA, 1988.

    Google Scholar 

  51. R. L. Moose and M. J. Caputi. A convergence analysis of a passive underwater tracking system with nonlinear feedback,IEEE Trans. Acoust. Speech Signal Process.,34(6):1401–1409, 1986.

    Google Scholar 

  52. T. Koh and E. J. Powers. Second-order Volterra filtering and its application to nonlinear system identification.IEEE Trans. Acoust. Speech Signal Process.,33(6):1445–1455, 1985.

    Google Scholar 

  53. K. I. Kim and E. J. Powers. A digital method of modeling quadratically nonlinear systems with a general random input.IEEE Trans. Acoust. Speech Signal Process.,36(11):1758–1769, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NASA Ames Research Center under Grant NAG 2-366, Supplement No. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, L.R., Linebarger, D.A. & DeGroat, R.D. Realizations of nonlinear systems. Circuits Systems and Signal Process 8, 487–506 (1989). https://doi.org/10.1007/BF01599769

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01599769

Keywords

Navigation