Skip to main content
Log in

C*-algebras and Mackey's axioms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A non-commutative version of probability theory is outlined, based on the concept of aΣ*-algebra of operators (sequentially weakly closedC*-algebra of operators). Using the theory ofΣ*-algebras, we relate theC*-algebra approach to quantum mechanics as developed byKadison with the probabilistic approach to quantum mechanics as axiomatized byMackey. TheΣ*-algebra approach to quantum mechanics includes the case of classical statistical mechanics; this important case is excluded by theW*-algebra approach. By considering theΣ*-algebra, rather than the von Neumann algebra, generated by the givenC*-algebraA in its reduced atomic representation, we show that a difficulty encountered byGuenin concerning the domain of a state can be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies, E. B.: On the Borel structure ofC*-algebras. Commun. Math. Phys.8, 147–163 (1968).

    Google Scholar 

  2. Dixmier, J.: LesC*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.

    Google Scholar 

  3. —— Les algèbres d'opérateurs dans l'espace hilbertien. Paris: Gauthier-Villars 1957.

    Google Scholar 

  4. Dye, H. A.: The Radon-Nikodym theorem. Trans. Am. Math. Soc.72, 243–280 (1952).

    Google Scholar 

  5. Gleason, A. M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech.6, 885–893 (1957).

    Google Scholar 

  6. Glimm, J., andR. V. Kadison: Unitary operators inC*-algebras. Pacific J. Math.10, 547–556 (1960).

    Google Scholar 

  7. Guenin, M.: Axiomatic foundations of quantum theories. J. Math. Phys.7, 271–282 (1966).

    Google Scholar 

  8. Haag, R., andD. Kastler: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964).

    Google Scholar 

  9. Halmos, P.: Introduction to Hilbert space. New York: Chelsea publishing company 1957.

    Google Scholar 

  10. Kadison, R. V.: Operator algebras with a faithful weakly-closed representation. Ann. Math.64, 175–181 (1956).

    Google Scholar 

  11. Kadison, R. V.: Transformations of states in operator theory and dynamics. Topology3, suppl. 2, 177–198 (1965).

    Google Scholar 

  12. ——, andJ. R. Ringrose: Derivations and automorphisms of operator algebras. Commun. Math. Phys.4, 32–63 (1967).

    Google Scholar 

  13. Mackey, G. W.: Mathematical foundations of quantum mechanics. New York: Benjamin 1963.

    Google Scholar 

  14. Piron, C.: Axiomatique quantique. Helv. Phys. Acta37, 439–468 (1964).

    Google Scholar 

  15. Plymen, R. J.: A modification of Prion's axioms. Helv. Phys. Acta41, 69–74 (1968).

    Google Scholar 

  16. Sakai, S.: A characterization ofW*-algebras. Pacific J. Math.6, 763–773 (1956).

    Google Scholar 

  17. Segal, I. E.: Postulates for general quantum mechanics. Ann. Math.48, 930–948 (1947).

    Google Scholar 

  18. Streater, R. F.: The Heisenberg ferromagnet as a quantum field theory. Commun. Math. Phys.6, 233–247 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plymen, R.J. C*-algebras and Mackey's axioms. Commun.Math. Phys. 8, 132–146 (1968). https://doi.org/10.1007/BF01645801

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645801

Keywords

Navigation