Skip to main content
Log in

Dynamics of discrete automata

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

This review deals with the theory and practice of discrete automata, especially with transition processes and hazardous races in such automata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. Al'tman, “Modern achievements in the domain of logic IC and LSI,” Elektronika, No. 4, 25–55 (1974).

    Google Scholar 

  2. A. A. Ambartsumyan, “Automatic designing of discrete control devices for engineeringtransport equipment on the basis of the FORUM language,” in: Coll. Sci. Proceed, Chelyabinsk Polytechnical Inst., No. 138, 36–43 (1973).

    Google Scholar 

  3. A. N. Anishchenko and A. E. Yankovskaya, “Detection and elimination of static races,” Second All-Union Conference on the Theory of Relay Devices and Finite Automata, Abstracts of Reports, Riga (1971), pp. 179–180.

  4. A. G. Astanovskii, L. Ya. Rozenblyum, N. A. Starodubtsev, R. L. Finkel'shtein, and B. S. Tsirlin, “Computing and control circuits based on aperiodic automata with self-synchronization,” in: Discrete Systems, Vol. 4, Zinatne, Riga (1974), pp. 68–78.

    Google Scholar 

  5. I. N. Bukreev, B. M. Mansurov, and V. I. Goryachev, Microelectronic Circuits of Digital Devices [in Russian], Sovet-skoe Radio, Moscow (1973).

    Google Scholar 

  6. V. I. Varshavskii, “Aperiodic automata with self-synchronization,” in: Discrete Systems, Vol. 1, Zinatne, Riga (1974), pp. 9–25.

    Google Scholar 

  7. I. S. Vizirev, “On the stability of an asynchronous finite automaton,” in: Discrete Systems, Vol. 1, Zinatne, Riga (1974), pp. 94–103.

    Google Scholar 

  8. I. S. Vizirev, “Reducing the number of delays in the realization of an asynchronous finite automaton,” Avtomat. Vychisl. Tekh., No. 1, 1–6 (1973).

    Google Scholar 

  9. I. S. Vizirev and A. F. Petrenko, “Elimination of hazardous logic races in the design of asynchronous automata,” Avtomat. Vychisl. Tekh., No. 3, 1–9 (1975).

    Google Scholar 

  10. M. A. Gavrilov and V. V. Devyatkov, “Peculiar features of logic design in DASP system,” in: Abstract and Structural Theory of Relay Devices, Nauka, Moscow (1975), pp. 5–7.

    Google Scholar 

  11. M. A. Gavrilov, V. M. Ostianu, and A. I. Potekhin, “Reliability of discrete systems,” in: Teoriya Veroyatnostei. Mat. Statistika. Teor. Kibernetika, 1969. (Itogi Nauki. VINITI AN SSSR), Moscow (1970), pp. 7–104.

    Google Scholar 

  12. A. Yu. Gobzemis, “Design of asynchronous finite automata with feedback logic,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 2, Varna (1971), pp. 263–268.

    Google Scholar 

  13. A. Yu. Gobzemis, “Design of asynchronous finite automata based on a model with feedback logic,” in: Problems of Design of Finite Automata, Zinatne, Riga (1972), pp. 3–8.

    Google Scholar 

  14. A. Yu. Gobzemis, “Design of asynchronous automata using universal modules,” in: Theory of Finite Automata and Its Applications, No. 4, Zinatne, Riga (1975), pp. 3–11.

    Google Scholar 

  15. A. Yu. Gobzemis and V. P. Chapenko, “Coding of internal states of automata taking into account the relationship between the delays of memory elements,” Avtomat. Vychisl. Tekh., No. 6, 14–18 (1973).

    Google Scholar 

  16. V. G. Gorobets, “Certain algorithms of distribution of asynchronous finite automata designed on the basis of universal unifunctional elements,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 1, Varna (1971), pp. 136–143.

    Google Scholar 

  17. V. G. Gorobets, “Design of asynchronous finite automata on the basis of homogeneous arrays,” in: Problems of Design of Finite Automata, Zinatne, Riga (1972), pp. 55–63.

    Google Scholar 

  18. D. R. Grinbaum, “Models of digital IC for computer-aided design, Review, Part I, TTL NAND gates,” Elektronika, No. 25, 46–52 (1973).

    Google Scholar 

  19. D. R. Grinbaum and V. A. Miller, “Models of digital IC for computer-aided design, Review, Part II, Elektronika, No. 26, 67–73 (1973).

    Google Scholar 

  20. D. R. Grinbaum and V. A. Miller, “Models of digital IC for computer-aided design, Review, Part IV, AND-OR-NOT gates,” Elektronika, No. 3, 55–58 (1974).

    Google Scholar 

  21. G. K. Deksnis, “Certain problems of coding of the internal states of asynchronous finite automata,” in: Problems of Design of Finite Automata, Zinatne, Riga (1972), pp. 9–19.

    Google Scholar 

  22. E. L. Denisenko, “On a method for reducing the dimension of the problem of antirace coding of the states of an asynchronous automaton by decomposing it,” in: Automation of the Logic Design of Digital Devices, Kiev (1973), pp. 86–93.

  23. N. B. Doncheva and I. S. Vizirev, “Algorithmic realization of finite automaton in homogeneous array,” in: Discrete Systems, Vol. 3, Zinatne, Riga (1974), pp. 205–214.

    Google Scholar 

  24. A. D. Zakrevskii, Algorithms of Design of Discrete Automata [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  25. A. D. Zakrevskii, Computer-Aided Design of Asynchronous Automata [in Russian], Nauka i Tekhnika, Minsk (1975).

    Google Scholar 

  26. A. D. Zakrevskii, A. N. Anishchenko, L. I. Balaklei, N. A. Eliseeva, A. M. Oralov, L. D. Pikhtova, Yu. V. Pottosin, N. R. Toropov, and A. E. Yankovskaya, “The AVTOMAT-3 system of automatic design of discrete automata,” in: Discrete Systems, Vol. 3, Zinatne, Riga (1974), pp. 84–92.

    Google Scholar 

  27. A. D. Zakrevskii, Yu. M. Komarov, and A. E. Yankovskaya, “Neighbor coding of internal states of asynchronous automata,” in: Discrete Systems, Vol. 1, Zinatne, Riga (1974), pp. 104–112.

    Google Scholar 

  28. A. D. Zakrevskii, Yu. V. Pottosin, V. F. Rotko, N. R. Toropov, and A. E. Yankovskaya, “Systems and programs of design of discrete devices, a system of automatic design of discrete automata,” Inform. Materials Science Council for the Complex Problem of Cybernetics at the Acad. Sci. USSR, No. 7(54) (1971), pp. 42–62.

    Google Scholar 

  29. A. D. Zakrevskii and A. E. Yankovskaya, “Noiseproof coding of internal states of asynchronous automata,” Inform. Materials Science Council for the Complex Problem of Cybernetics at the Acad. Sci. USSR, No. 3(50) (1971), pp. 53–58.

    Google Scholar 

  30. I. G. Ilzinya and G. F. Fritsnovich, “Coding of internal states of asynchronous finite automata by P-code,” Avtomat. Vychisl. Tekh., No. 6, 5–11 (1970).

    Google Scholar 

  31. M. A. Kaevchenko, “Coding of asynchronous finite automata,” (Editorial Board of Journal Avtomatika i Vychisl. Tekhn. Acad. Sci. LatSSR), Riga (1973). (Manuscript deposited at VINITI on Dec. 11, 1973, No. 7550-73 Dep.)

  32. V. V. Karyos and A. F. Petrenko, “Coding of states of asynchronous automata based on two-stage memory model,” in: Theory of Finite Automata and Its Applications, No. 1, Zinatne, Riga (1973), pp. 35–46.

    Google Scholar 

  33. Ya. N. Kobrinskii and N. N. Zubov, “Ensuring stability in potential logic networks. I,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 6, 149–159 (1972).

    Google Scholar 

  34. V. M. Kopylenko, “Design of race-free circuits in the logic part of a relay device,” in: Design Principles and Methods of Synthesis of Operating Units of Remote-Control Systems, Ilim, Frunze (1971), pp. 22–31.

    Google Scholar 

  35. A. G. Lebedev and A. I. Potekhin, “Algorithm of coding of internal states of relay devices,” in: Abstract and Structural Theory of Relay Devices, Nauka, Moscow (1972), pp. 147–157.

    Google Scholar 

  36. R. Miller, Theory of Switching Circuits. II. Sequential Networks and Machines [Russian translation], Nauka, Moscow (1971).

    Google Scholar 

  37. N. V. Mon'kov, “On a problem of structural design of asynchronous finite automata,” Collect. Papers Leningrad Inst. Railway Engineering Transport, No. 312 (1970), pp. 65–72.

    Google Scholar 

  38. Yu. E. Naumov, N. A. Avaev, and M. A. Bedrekovskii, Noise Immunity in Integrated Logic Circuits [in Russian], Sov. Radio, Moscow (1975).

    Google Scholar 

  39. A. A. Nikanorov, M. S. Pinsker, and Yu. L. Sagalovich, “Peculiar features of redundancy limits for state codes of automata,” in: Discrete Systems, Vol. 4, Zinatne, Riga (1974), pp. 217–220.

    Google Scholar 

  40. V. Onzul, “Functional races in combinational logic circuits,” Proceed. International Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 2, Varna (1971), pp. 295–302.

    Google Scholar 

  41. A. F. Petrenko, “Method of coding of internal states of asynchronous finite automata,” in: Vychisl. Tekhnika, Vol. 3, Kaunas (1972), pp. 52–53.

    Google Scholar 

  42. A. F. Petrenko, “Minimization of length of code of internal states of asynchronous finite automata with two-stage memory,” in: Problems of Design of Finite Automata, Zinnatne, Riga (1972), pp. 21–26.

    Google Scholar 

  43. A. F. Petrenko, “Model of asynchronous finite automaton with three-stage memory,” Avtomat. Vychisl. Tekh., No. 5, 1–6 (1971).

    Google Scholar 

  44. A. F. Petrenko, “Models of asynchronous finite automata,” Avtomat. Vychisl. Tekh., No. 4, 1–13 (1973).

    Google Scholar 

  45. A. F. Petrenko, “On the realization of asynchronous automata with delays,” in: Problems of Design of Digital Computer Logic, Part 2, Vilnius (1974), pp. 24–29.

  46. A. F. Petrenko, “Using the simplicity of structure in coding the internal states of an asynchronous automaton by a direct code,” Avtomat. Vychisl. Tekh., No. 1, 19–22 (1972).

    Google Scholar 

  47. A. F. Petrenko and G. F. Fritsnovich, “Design of asynchronous finite automata taking into account a reduction in the number of filters,” Avtomat. Vychisl. Tekh., No. 6, 19–22 (1972).

    Google Scholar 

  48. E. I. Piil', “Coding of states of microprogram automata,” in: Discrete Automata and Communication Networks, Nauka, Moscow (1970), pp. 57–65.

    Google Scholar 

  49. M. S. Pinsker and Yu. L. Sagalovich, “Memory capacity of an automaton that is stable with respect to damage and races of delay elements,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 2, Varna (1971), pp. 315–324.

    Google Scholar 

  50. M. S. Pinsker and Yu. L. Sagalovich, “Lower bound for power of code of automata states,” Probl. Peredachi Inf.,8, No. 3, 58–66 (1972).

    Google Scholar 

  51. A. I. Potekhin, “A method of design of asynchronous automata,” in: Discrete Systems, Vol. 1, Zinatne, Riga (1974), pp. 222–230.

    Google Scholar 

  52. A. I. Potekhin, “A method of transformation of the transition graph of a relay device into a partial subgroup of an n-dimensional unit cube,” in: Optimization of Operations Research., Bionics, Nauka, Moscow (1973), pp. 138–144.

    Google Scholar 

  53. V. N. Roginskii, Foundations of Discrete Automation [in Russian], Svyaz', Moscow (1975).

    Google Scholar 

  54. Yu. L. Sagalovich, Coding of States and Reliability of Automata [in Russian], Svyaz', Moscow (1975).

    Google Scholar 

  55. V. V. Sapozhnikov and Vl. V. Sapozhnikov, “Obtaining of switching functions of memory elements of finite automata in the case of state coding according to transition table columns,” Probl. Peredachi Inf.,9, No. 4, 90–91 (1973).

    Google Scholar 

  56. V. V. Sapozhnikov and Vl. V. Sapozhnikov, “Design of asynchronous finite automata that are stable with respect to damage of elements of logic converter,” Avtomat. Vychisl. Tekh., No. 3, 39 (1974).

    Google Scholar 

  57. V. V. Sapozhnikov and Vl. V. Sapozhnikov, “Standard realization of relay device,” Avtomat. Vychisl. Tekh., No. 1, 13–16 (1971).

    Google Scholar 

  58. I. D. Seifulla, “Elimination of critical races in an asynchronous automaton realized in a homogeneous matrix array,” in: Automata and Control, Nauka, Moscow (1972), pp. 35–38.

    Google Scholar 

  59. I. D. Seifulla, A. V. Solov'ev, and V. G. Chernyaev, “Algorithm of design of asynchronous automata in a homogeneous matrix array,” in: Design of Automata and Control in Communication Networks, Nauka, Moscow (1973), pp. 67–72.

    Google Scholar 

  60. A. A. Tal' and S. A. Yuditskii, “Description and synthesis of asynchronous discrete devices,” in: Discrete Systems, Vol. 1, Zinatne, Riga (1974), pp. 242–251.

    Google Scholar 

  61. Yu. L. Tomfel'd, “On logic races in faulty circuits,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 2, Varna (1971), pp. 420–429.

    Google Scholar 

  62. T. L. Frantsis, “Design of asynchronous time automata with delays,” in: Problems of Design of Finite Automata, Zinatne, Riga (1972), pp. 65–71.

    Google Scholar 

  63. G. F. Fritsnovich, “Coloring of graph vertices used for optimizing the design of asynchronous finite automata,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 1, Varna (1971), pp. 118–127.

    Google Scholar 

  64. G. F. Fritsnovich, “Coding of internal states of asynchronous finite automata by an ncode of minimal length,” in: Theory of Finite Automata and Its Applications, No. 1, Zinatne, Riga (1973), pp. 23–24.

    Google Scholar 

  65. G. N. Fritsnovich and M. I. Yakobzon, “Coloring of graph vertices used for coding of states of asynchronous finite automata,” in: Problems of Design of Finite Automata, Zinatne, Riga (1972), pp. 41–46.

    Google Scholar 

  66. E. A. Kholina, “Analysis and elimination of races in two-level logic circuits,” in: Theory of Finite Automata and Its Applications,” No. 2, Zinatne, Riga (1973), pp. 46–52.

    Google Scholar 

  67. V. G. Chernyaev, “Problems of stable operation of automata in a homogeneous matrix array,” in: Third Conference on Logic Design in Discrete Homogeneous Arrays, 1974, Abstracts of Reports, Ryazan (1974), pp. 110–112.

  68. V. G. Chernyaev, “On the design of stable modular circuits of asynchronous automata,” in: Automata and Control, Nauka, Moscow (1972), pp. 40–44.

    Google Scholar 

  69. V. G. Chernyaev, “Neighbor coding and the design of stable modular automata circuits,” in: Design of Control Devices and Systems, Nauka, Moscow (1974), pp. 49–58.

    Google Scholar 

  70. D. B. Shishkov, “Canonical realization of automata,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 1, Varna (1971), pp. 238–248.

    Google Scholar 

  71. É. A. Yakubaitis, “Irredundant coding of internal states of finite automata,” in: Automata, Hybrid and Control Computers, Nauka, Moscow (1972), pp. 79–88.

    Google Scholar 

  72. É. A. Yakubaitis, “Integrated model of discrete devices,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 1, Varna (1971), pp. 46–64.

    Google Scholar 

  73. É. A. Yakubaitis, “Singular states of cyclic model of discrete devices,” Avtomat. Vychisl. Tekh., No. 4, 1–5 (1971).

    Google Scholar 

  74. É. A. Yakubaitis, Design of Asynchronous Finite Automata [in Russian], Zinatne, Riga (1970).

    Google Scholar 

  75. É. A. Yakubaitis, “Synchronized finite automata,” Avtomat. Vychisl. Tekh., No. 3, 1–8 (1973).

    Google Scholar 

  76. É. A. Yakubaitis, “Synchronized model of discrete devices,” Avtomat. Vychisl. Tekh., No. 4, 14–21 (1973).

    Google Scholar 

  77. É. A. Yakubaitis, “Stable coding of states of cyclic model of discrete devices,” Avtomat. Vychisl. Tekh., No. 2, 1–6 (1972).

    Google Scholar 

  78. É. A. Yakubaitis, V. O. Vasyukevich, A. Yu. Gobzemis, N. E. Zaznova, A. A. Kurmit, A. A. Lorents, A. F. Petrenko, and V. P. Chapenko, “Theory of automata,” in: Teoriya Veroyatnostei, Mat. Statistika, Teor. Kibernetika,13 (Itogi Nauki i Tekhniki. VINITI AN SSSR), Moscow (1976), pp. 109–188.

  79. É. A. Yakubaitis and A. Yu. Gobzemis, “Coding of internal states of asynchronous finite automata with two-stage memory,” Avtomat. Vychisl. Tekh., No. 6, 1–4 (1970).

    Google Scholar 

  80. É. A. Yakubaitis, A. Yu. Gobzemis, A. F. Petrenko, and G. F. Fritsnovich, “On the design of asynchronous finite automata,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 6, 139–148 (1972).

    Google Scholar 

  81. É. A. Yakubaitis and A. F. Petrenko, “Reducing the number of memory elements of a cyclic model of discrete devices,” Avtomat. Vychisl. Tekh., No. 1, 1–5 (1972).

    Google Scholar 

  82. A. E. Yankovskaya, “Coding algorithms for internal states of asynchronous automata,” in: Digital Models and Integrating Structures, Taganrog (1970), pp. 371–380.

  83. V. Batra, “Design of asynchronous unit delays,” IEEE Trans. Comput.,19, No. 10, 896–902 (1970).

    Google Scholar 

  84. J. Bredeson, “On multiple input change hazard-free combinational switching circuits without feedback,” IEEE 14th Annual Symp. Switch. and Automata Theory, 1973, Northridge, Calif. (1973), pp. 56–63.

  85. J. Bredeson and P. T. Hulina, “Elimination of static and dynamic hazards for multiple input changes in combinational switching circuits,” Inf. Control,20, No. 2, 114–124 (1972).

    Google Scholar 

  86. J. Bruno and S. M. Altman, “A theory of asynchronous control networks,” IEEE Trans. Comput.,20, No. 6, 629–638 (1971).

    Google Scholar 

  87. H. Y. H. Chuang and Das Santanu, “Synthesis of multiple-input change asynchronous machines using controlled excitation and flip-flops,” IEEE Trans. Comput.,22, No. 12, 1103–1109 (1973).

    Google Scholar 

  88. R. David and P. Deschizeaux, “Automatic synthesis of asynchronous sequential networks with universal cells,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 1, Varna (1971), pp. 144–156.

    Google Scholar 

  89. R. David, J. C. Laurent, and R. Perret, “Principle and realization with MOS technology of a universal cell for asynchronous sequences,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 1, Varna (1971), pp. 157–170.

    Google Scholar 

  90. E. G. DuCasse and G. A. Metze, “Hazard-free realizations of Boolean functions using Post functions,” Conf. Rec. Int. Symp. Multiple-Valued Logic, Toronto, 1973, S. 1, 59–67 (1973).

  91. D. Elhadef and E. Smith, “State assignment for multiple-output-change asynchronous sequential machines,” Proc. Sixth Annual Southeast Symp. Syst. Theory, Baton Rouge, La., 1974, FA-4, No. 1, 1–3, Baton Rouge, La.

    Google Scholar 

  92. A. D. Friedman, R. L. Graham, and J. D. Ullman, “Universal single transition time asynchronous state assignments,” IEEE Trans. Comput.,18, No. 6, 541–547 (1969).

    Google Scholar 

  93. G. Frosini, “Influence of state reduction of the number of state variables in racefree asynchronous sequential circuits,” Inf. Control,20, No. 1, 55–68 (1972).

    Google Scholar 

  94. G. Frosini and G. Gerace, “A universal STT state assignment method for pulse input asynchronous sequential circuits,” IEEE Trans. Comput.,20, No. 8, 856–861 (1971).

    Google Scholar 

  95. G. Frosini and G. Gerace, “Master-slave realization of asynchronous sequential circuits,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Varna (1971), pp. 214–237.

  96. G. Frosini and G. Gerace, “Pulse input asynchronous sequential circuits,” IEEE Trans. Comput.,20, No. 4, 437–442 (1971).

    Google Scholar 

  97. J. C. Geffroy, “Totally left-testing asynchronous sequential circuits,” in: Discrete Systems, Vol. 2, Zinatne, Riga (1974), pp. 134–143.

    Google Scholar 

  98. R. Hackbart and D. Dietmeyer, “The avoidance and elimination of function hazards in asynchronous sequential circuits,” IEEE Trans. Comput.,20, No. 2, 184–189 (1971).

    Google Scholar 

  99. G. Hallbauer, “On the RENDIS-C program system for race-free and optimal coding of internal states of sequential circuits,” 18th Int. Sci. Colloq. Techn. Hochsch. Ilmenau, No. 4, 77–80, S. 1, s. a. (1973).

    Google Scholar 

  100. P. T. Hulina and J. G. Bredeson, “Synthesis of asynchronous sequential circuits using race-resistant flip-flops,” Proc. 5th Annual Princeton Conf. Inform. Sci. and Syst., Princeton, N. J., 307–314 (1971).

  101. J. R. Jump, “Asynchronous control arrays,” IEEE Trans. Comput.,23, No. 10, 1020–1029 (1974).

    Google Scholar 

  102. H. Kamionka-Mikula, “Design of hazard-free minimal sequential TANT control systems,” Arch. Automat, e Telemech.,19, No. 2, 183–197 (1974).

    Google Scholar 

  103. A. Kandel, “Note on hazard elimination,” IEEE Trans. Comput.,22, No. 10, 955–956 (1973).

    Google Scholar 

  104. R. S. Kashef, “On the race-free assignment and classification of asynchronous sequential machines,” Proc. 5th Hawai Int. Conf. Syst. Sci., Honolulu, Haw., 1972 (Hollywood, Calif.) (1972), pp. 459–462.

  105. R. S. Kashef and R. B. McGhee, “Augmented parity check codes for encoding of asynchronous sequential machines,” IEEE Trans. Comput.,22, No. 10, 891–896 (1973).

    Google Scholar 

  106. Izumi Kimura, “Space-continuous time-semicontinuous theory of speed-independent asynchronous circuits,” Inf. Control,22, No. 4, 373–393 (1973).

    Google Scholar 

  107. L. K. Larry, “A characterization of some asynchronous sequential networks and state assignments,” IEEE Trans. Comput.,20, No. 4, 426–436 (1971).

    Google Scholar 

  108. G. Magö, “Asynchronous sequential circuits with (2, 1) type state assignments,” IEEE Conf. Rec. 11th Annual Symp. Switch. and Automata Theory, Santa Monica, Calif., 1970, New York, N. Y. (1970), pp. 109–113.

  109. G. Magó, “Monotone functions in sequential circuits,” IEEE Trans. Comput.,22, No. 10 928–933 (1973).

    Google Scholar 

  110. G. Magó, “Realization methods for asynchronous sequential circuits,” IEEE Trans. Comput.,20, No. 3, 290–297 (1971).

    Google Scholar 

  111. G. K. Maki and D. H. Sawin, “Asynchronous sequential circuits capable of detecting and tolerating single faults,” FTC/3. Int. Symp. Fault-Tolerant Comput., Palo Alto, Calif., 1973, Dig. Pap. New York, N. Y. (1973), 151–156.

  112. G. K. Maki and D. H. Sawin, “Fault-tolerant asynchronous sequential machines,” IEEE Trans. Comput.,23, No. 7, 651–657 (1974).

    Google Scholar 

  113. G. Maki and J. H. Tracey, “State assignment selection in asynchronous sequential circuits,” IEEE Trans. Comput.,19, No. 7, 641–644 (1970).

    Google Scholar 

  114. G. Maki, J. H. Tracey, and R. J. Smith, “Generation of design equations in asynchronous sequential circuits,” IEEE Trans. Comput.,18, No. 5, 467–470 (1969).

    Google Scholar 

  115. L. L. Maté, Das Santanu, and H. Y. H. Chuang, “A logicl hazard detection and elimination method,” Inf. Control,26, No. 4, 351–368 (1974).

    Google Scholar 

  116. G. Moraga and J. Gutiérrez, “Critical races in fundamental mode ternary sequential machines,” Proc. Int. Symp. Multiple-Valued Logic, Morgantown, W. Va., 1974, 401–411 (1974).

    Google Scholar 

  117. Yuzo Mukai and Yoshihiro Tohma, “A method for the realization of fail-safe asynchronous sequential circuits,” IEEE Trans. Comput.,23, No. 7, 736–739 (1974).

    Google Scholar 

  118. Katsuhiko Nakamura, “Asynchronous cellular automata and their computational ability,” Densi Tsusin Gakkai Rombunsi, Trans. Inst. Electr. Commun. Eng. Jpn.,D57, No. 10, 573–580 (1974).

    Google Scholar 

  119. W. W. Patterson and G. Metze, “A fail-safe asynchronous sequential machine,” IEEE Trans. Comput.,23, No. 4, 369–374 (1974).

    Google Scholar 

  120. W. W. Patterson and G. Metze, “A fault-tolerant asynchronous sequential machine,” Dig. Pap. Int. Symp. Fault-Tolerant Comput., Newton, Mass., 1972, New York, N. Y. (1972), pp. 176–181.

  121. D. K. Pradhan and S. M. Reddy, “Fault-tolerant asynchronous networks,” IEEE Trans. Comput.,22, No. 7, 662–669 (1973).

    Google Scholar 

  122. C. A. Rey, “Self-synchronized combinational circuits,” Inform. Process. 74, 168–170, Amsterdam-London (1974).

    Google Scholar 

  123. C. A. Rey and J. Vaucher, “Self-synchronized asynchronous machines,” IEEE Trans. Comput.,23, No. 12, 1306–1311 (1974).

    Google Scholar 

  124. K. Sapilcha, “Elimination of M-races in realizations of partially determined Boolean functions,” Arch. Automat. Telemech.,19, No. 2, 199–205 (1974).

    Google Scholar 

  125. G. Saucier, “Assignment and next equations of asynchronous sequential machines,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 2, Varna (1971), pp. 325–332.

    Google Scholar 

  126. G. Saucier, “Next-state equations of asynchronous machines,” IEEE Trans. Comput.,21, No. 4, 397–399 (1972).

    Google Scholar 

  127. G. Saucier, “State assignment of asynchronous sequential machines using graph techniques,” IEEE Trans. Comput.,21, No. 3, 282–288 (1972).

    Google Scholar 

  128. D. H. Sawin and G. K. Maki, “Asynchronous sequential machines designed for fault detection,” IEEE Trans. Comput.,23, No. 3, 239–249 (1974).

    Google Scholar 

  129. D. H. Sawin and S. R. Groenig, “Design of asynchronous sequential machines for fault detection,” Dig. Pap. Int. Symp. Fault-Tolerant Comput., Newton, Mass, New York, N. Y. (1972), pp. 170–175.

  130. M. Servit, “Hazard correction in asynchronous sequential circuits using inertial delay elements,” IEEE Trans. Comput.,22, No. 10, 1041–1042 (1973).

    Google Scholar 

  131. S. Singh, “On delayed-input asynchronous sequential circuits,” IEEE Trans. Comput.,20, No. 5, 500–503 (1971).

    Google Scholar 

  132. J. R. Smith and C. H. Roth, “Analysis and synthesis of asynchronous sequential networks using edge-sensitive flip-flops,” IEEE Trans. Comput.,20, No. 8, 847–855 (1971).

    Google Scholar 

  133. R. J. Smith, “Generation of internal state assignments for large asynchronous sequential machines,” IEEE Trans. Comput.,23, No. 9, 924–932 (1974).

    Google Scholar 

  134. J. Sosnowski, “Determination of excitation functions of elementary automata,” Arch. Automat. Telemech.,17, No. 1, 3–19 (1972).

    Google Scholar 

  135. Chung-Jen Tan, “State assignments for asynchronous sequential machines,” Proc. 7th Annual Allerton Conf. Circuit and Syst. Theory, Monticello, Ill. (New York, N. Y.), s. a., 661 (1969).

  136. Chung-Jen Tan, “State assignments for asynchronous sequential machines,” IEEE Trans. Comput.,20, No. 4, 382–391 (1971).

    Google Scholar 

  137. Yoshihiro Tohma, Yasuyoshi Ohyama, and Ryozo Sakai, “Realization of fail-safe sequential machines by using a k-out-of-n code,” IEEE Trans. Comput.,20, No. 11, 1270–1275 (1971).

    Google Scholar 

  138. S. H. Unger, Asynchronous Sequential Switching Circuits, Wiley, New York (1969).

    Google Scholar 

  139. S. H. Unger, “Asynchronous sequential switching circuits with unrestricted input changes,” IEEE Conf. Rec. 11th Annual Symp. Switch. and Automata Theory, Santa Monica, Calif., 1970, New York, N. Y. (1970), pp. 114–121.

  140. I. Vizirev, “Realization of asynchronous finite automata with multiple-input changes by transforming the flow table,” Proceed. Inter. Seminar on Applied Aspects of Automata Theory, Varna, 1971, Vol. 2, Varna (1971), pp. 255–262.

    Google Scholar 

  141. E. A. Yakubaitis, “A cyclic model of a finite automaton,” Proc. IFAC 5th World Congr., Part 4, S. 1, s. a., 39-4/1-39-4/6 (1972).

Literature cited

  1. V. P. Aleksandrov, “Pulse noise-immunity of logic element circuits,” Avtomat. Vychisl. Tekh., No. 5, 65–70 (1971).

    Google Scholar 

  2. V. P. Aleksandrov, “Time analysis of races in asynchronous logic automata,” Izv. Vyssh. Uchebn. Zaved., Priborostr.,15, No. 8, 62–67 (1972).

    Google Scholar 

  3. N. N. Bochanova, “Analysis of dynamic mode of finite automata,” in: Reliability of Control Systems, Naukova Dumka, Kiev (1973), pp. 78–82.

    Google Scholar 

  4. T. M. Vorob'eva, K. A. Iyudu, and V. N. Kruglov, “Dynamic characteristics of logic networks,” Avtomat. Telemekh., No. 3, 172–177 (1971).

    Google Scholar 

  5. M. A. Gavrilov, V. M. Ostiany, and A. I. Potekhin, “Reliability of discrete systems,” in: Teor. Veroyatn. Mat. Stat., Teor. Kibernetika. 1969(Itogi Nauki. VINITI AN SSSR), Moscow (1970), pp. 7–104.

  6. É. A. Dobracheva, “One-cycle attenuation in asynchronous circuits,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 3, 122–128 (1973).

    Google Scholar 

  7. Ya. N. Kobrinskii and N. N. Zubov, “Ensuring stability in potential logic circuits. I,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 6, 149–159 (1972).

    Google Scholar 

  8. Ya. N. Kobrinskii and N. N. Zubov, “Ensuring the stability of transitions in potential logic Circuits. II,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 2, 97–105 (1974).

    Google Scholar 

  9. V. I. Levin, “Infinite-valued logic and transient processes in finite automata,” Avtomat. Vychisl. Tekh., No. 6, 1–9 (1972).

    Google Scholar 

  10. V. I. Levin, “Minimization of representation of transient processes in asynchronous automata,” Avtom. Vychisl. Tekh., No. 6, 9–12 (1973).

    Google Scholar 

  11. V. I. Levin, “Transient processes in typical logic circuits,” Avtomat. Vychisl. Tekh., No. 6, 13–14 (1973).

    Google Scholar 

  12. V. I. Levin, “Decomposition of transient processes in finite automata,” Avtomat. Vychisl. Tekh., No. 6, 19–24 (1973).

    Google Scholar 

  13. V. I. Levin, “Transient processes in discrete devices,” Upr. Sistemy Mashiny, No. 5, 119–122 (1973).

    Google Scholar 

  14. V. I. Levin, “Analysis of transient processes in combinational circuits,” Elektron. Inf. Kybern.,9, No. 6, 355–364 (1973).

    Google Scholar 

  15. V. I. Levin, “Transient processes in multiinput logic elements,” in: Theory of Finite Automata and Its Applications, No. 2, Zinatne, Riga (1973), pp. 31–45.

    Google Scholar 

  16. V. I. Levin, “Transient processes in simplest asynchronous automata with memory,” Avtomat. Vychisl. Tekh., No. 2, 24–28 (1974).

    Google Scholar 

  17. V. I. Levin, “Analysis of switching dynamics of automata with memory,” Avtomat. Vychisl. Tekh., No. 3, 15–23 (1974).

    Google Scholar 

  18. V. I. Levin, “Equations in infinite-valued logic and transient processes in finite automata,” Avtomat. Vychisl. Tekh., No. 5, 12–17 (1974).

    Google Scholar 

  19. V. I. Levin, “Analysis of asynchronous automata,” in: Theory of Finite Automata and Its Applications, No. 4, Zinatne, Riga (1974), pp. 68–77.

    Google Scholar 

  20. V. I. Levin, “Analysis of mode of generation in asynchronous automata,” Avtomat. Vychisl. Tekh., No. 4, 21–23 (1974).

    Google Scholar 

  21. V. I. Levin, “Equations in infinite-valued logic with deviating arguments,” Avtomat. Vychisl. Tekh., No. 1, 17–20 (1975).

    Google Scholar 

  22. V. I. Levin, “Transient processes in combinational circuits with delayed signal edges,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 2, 118–127 (1975).

    Google Scholar 

  23. V. I. Levin, Introduction to Dynamic Theory of Finite Automata [in Russian], Zinatne, Riga (1975).

    Google Scholar 

  24. R. Miller, Theory of Switching Circuits, Vol. I, Combinational Circuits [Russian translation], Nauka, Moscow (1970); Vol. II, Sequential Circuits and Machines, Nauka, Moscow (1971).

    Google Scholar 

  25. M. G. Millerova, “Time analysis of asynchronous logic networks,” Avtomat. Telemekh., No. 6, 162–165 (1973).

    Google Scholar 

  26. M. G. Millerova, “A method of transition from logic schemes of algorithms to an asynchronous logic network,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 2, 105–109 (1973).

    Google Scholar 

  27. M. G. Millerova, “Structural transformation and time analysis of asynchronous automata,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 2, 128–134 (1975).

    Google Scholar 

  28. W. Müller, “Probabilistic method of analysis of operation of dynamic automata,” Tr. Uchebn. In-tov Svyazi, Ministry of Communications of the USSR, No. 59, 91–96, Leningrad (1972).

    Google Scholar 

  29. V. N. Roginskii, “Dynamic automata and Boolean time functions. I,” Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 2, 109–118 (1970); II. Izv. Akad. Nauk SSSR, Tekh. Kibernetika, No. 3, 86–98 (1970).

    Google Scholar 

  30. V. N. Roginskii, Foundations of Discrete Automation (Statics and Dynamics of Discrete Automata) [in Russian], Svyaz', Moscow (1975).

    Google Scholar 

  31. V. N. Roginskii and W. Müller, “A dynamic automaton as a new model of relay devices,” Izv. Vyssh. Uchebn. Zaved., Elektromekh., No. 5, 479–488 (1973).

    Google Scholar 

  32. Yu. L. Tomfel'd, “Modes of operation of feedback loop of asynchronous logic network,” Avtomat. Telemekh., No. 3, 89–96 (1973).

    Google Scholar 

  33. É. A. Yakubaitis, Logic Automata and Micromodules [in Russian], Zinatne, Riga (1975).

    Google Scholar 

  34. D. Bochmann, “Dynamic operations in switching algebra,” Nachrichtentechnik, Vol. 1,21, No. 6, 227–229 (1971); Vol. 2,21, No. 8, 282–283 (1971); Vol. 3,22, No. 6, 189–191 (1972).

    Google Scholar 

  35. D. Bochmann, “Mathematical description of time processes in switching networks,” ZKI-Information,2, 65–70 (1973).

    Google Scholar 

  36. D. Bochmann, “Mathematical description of time processes in switching networks,” Nachrichtentechnik-Elektronik,23, No. 9, 325–327 (1973).

    Google Scholar 

  37. D. Bochmann, “Concept and methods of function optimization,” ZKI-Informationen, 1, 7–11 (1974).

    Google Scholar 

  38. D. Bochmann, “Binary signals and systems,” Nachrichtentechnik-Elektronik,25, No. 5, 166–171 (1975).

    Google Scholar 

  39. D. Bochmann, Introduction to Structural Automata Theory [in German], Technik Verlag, Berlin (1975);

    Google Scholar 

  40. D. Bochmann and M. Kieser, “Experience with a dialog-capable language for analysis of logic switching circuits,” Nachrichtentechnik-Elektronik,23, No. 4, 132 (1973).

    Google Scholar 

  41. W. Müller, “The dynamic automaton as a model for analysis of digital networks,” INT-Information, No. 1, 3–15 (1971).

    Google Scholar 

  42. W. Müller, “Analysis of transient processes in digital networks with the aid of probability functions,” Nachrichtentechnik,22, No. 2, 33–36 (1972).

    Google Scholar 

  43. W. Müller and V. N. Roginskii (W. N. Roginskiy), “The dynamic automaton as a new model for analyzing the transient performance in digital circuits,” Nachrichtentechnik,22, No. 6, 184–188 (1972).

    Google Scholar 

  44. J. Sifakis, “Study of Boolean time algebra,” C. R. Acad. Sci. Paris,275, No. 25, A1343-A1346 (1972).

    Google Scholar 

  45. J. Sifakis, “Time models of logic systems,” Ph. D. Thesis Univ. Sci. Med. Grenoble (1974).

  46. A. Thayse, “Boolean differential calculus,” Philips Res. Rept.,26, 229–249 (1971).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki. Teoriya Veroyatnostei, Matematicheskaya Statistika, Teoreticheskaya Kibernetika, Vol. 14, pp. 81–122, 1977.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potekhin, A.I., Roginskii, V.N. Dynamics of discrete automata. J Math Sci 13, 505–532 (1980). https://doi.org/10.1007/BF01673629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01673629

Keywords

Navigation