Skip to main content
Log in

The clinical importance of erythrocyte deformability, a hemorrheological parameter

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Summary

Hemorrheology, the science of the flow behavior of blood, has become increasingly important in clinical situations. The rheology of blood is dependent on its viscosity, which in turn is influenced by plasma viscosity, hematocrit, erythrocyte aggregation, and erythrocyte deformability. In recent years it has become apparent that the shape and elasticity of erythrocytes may be important in explaining the etiology of certain pathological situations. Thus, clinicians have become increasingly interested in hemorrheology in general and erythrocyte deformability in particular. In the course of time, many clinical studies have been performed, but no concise review has thus far been published. This article encompasses a review of the clinically based literature on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarts PAAM, Heethaar RM, Sixma JJ (1984) Red blood cell deformability influences platelet-vessel wall interaction in flowing blood. Blood 64: 1228–1233

    PubMed  Google Scholar 

  2. Aarts PAAM, Banga JD, van Houwelingen HC, Heethaar RM, Sixma JJ (1986) Increased red blood cell deformability due to isoxsuprine administration decreases platelet adherence in a perfusion chamber: a double-blind cross-over study in patients with intermittent claudication. Blood 67: 1474–1481

    PubMed  Google Scholar 

  3. Al-Khaja N, Belboul A, Bergman P, Roberts D, William-Olsson G (1988) Cutaneous microcirculation and blood rheology following cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg 22: 149–153

    PubMed  Google Scholar 

  4. Allard C, Mohandas N, Bessis M (1977) Red cell deformability changes in hemolytic anemias estimated by diffractometric methods (ektacytometry). Blood Cells 3: 209–221

    Google Scholar 

  5. Areekul S, Yamarat P (1988) Alterations in the viscosity and deformability of red cells in patients withPlasmodium falciparum. J Med Assoc Thai 71: 196–201

    PubMed  Google Scholar 

  6. Ballas SK, Larner J, Smith ED, Surrey S, Schwartz E, Rappaport EF (1988) Rheologic predictors of the severity of the painful sickle cell crisis. Blood 72: 1216–1223

    PubMed  Google Scholar 

  7. Bareford D, Lucas GS, Caldwell NM, Stone PCW, Baar S, Stuart J (1985) Erythrocyte deformability in peripheral occlusive arterial disease. J Clin Pathol 38: 135–139

    PubMed  Google Scholar 

  8. Bareford D, Stone PCW, Caldwell NM, Stuart J (1985) Erythrocyte morphology as a determinant of abnormal erythrocyte deformability in liver disease. Clin Hemorheol 5: 473–481

    Google Scholar 

  9. Bareford D, Lucas GS, Stone PCW, Caldwell NM, McGonigle R, Stuart J (1986) Erythrocyte deformability in chronic renal failure. Clin Hemorheol 6: 501–510

    Google Scholar 

  10. Bessis M, Mohandas N (1975) Deformability of normal, shapealtered and pathological red cells. Blood Cells 1: 315–321

    Google Scholar 

  11. Bessis M, Mohandas N (1975) A diffractometric method for the measurement of cellular deformability. Blood Cells 1: 307–313

    Google Scholar 

  12. Bessis M, Mohandas N (1977) Laser diffraction patterns of sickle cells in fluid shear fields. Blood Cells 3: 229–239

    Google Scholar 

  13. Bessis M, Mohandas N, Feo C (1980) Automated ektacytometry: a new method of measuring red cell deformability and red cell indices. Blood Cells 6: 315–327

    PubMed  Google Scholar 

  14. Bogin E, Earon Y, Blum M (1986) Effect of parathyroid hormone and uremia on erythrocyte deformability. Clin Chim Acta 161: 293–299

    PubMed  Google Scholar 

  15. Boisseau MR, Freyburger G, Lorient-Roudaut MF (1986) Changes in blood filterability in cerebrovascular accidents. Wien Med Wochenschr 136: 44–46

    PubMed  Google Scholar 

  16. Braasch D (1971) Red cell deformability and capillary blood flow. Physiol Rev 51: 679–701

    Google Scholar 

  17. Brown P, Harrison MJG (1989) Changes in blood filterability and platelet aggregability in patients with aortic valve replacements. Clin Hemorheol 9: 139–147

    Google Scholar 

  18. Cecchin E, De Marchi S, Panarello G, De Angelis V (1987) Rheological abnormalities of erythrocyte deformability and increased glycosylation of hemoglobin in the nephrotic syndrome. Am J Nephrol 7: 18–21

    PubMed  Google Scholar 

  19. Chien S (1977) Principles and techniques for assessing erythrocyte deformability. Blood Cells 3: 71–99

    Google Scholar 

  20. Chyzy R, Lukjan H, Rosc D, Bielawiec M, Sawicka J (1987) Some hemorheological factors in patients with arteriosclerosis obliterans after treatment with Trental. Folia Haematol (Leipz) 114: 549–554

    Google Scholar 

  21. Coulombel L, Tchernie G, Feo C, Mohandas N (1982) Echinocytic sensitivity and deformability of human newborn red cells. Biologia Neonatorum 42: 284–290

    Google Scholar 

  22. Cranston HA, Boylan CW, Carroll GL, Sutera SP, Williamson JR, Gluzman IY, Krogstad DJ (1984)Plasmodium falciparum maturation abolishes physiologic red cell deformability. Sience 223: 400–402

    Google Scholar 

  23. Decamps A, Zandecki M, Ribiere M, Goudemand J, Dracon M, Tarquet A, Cosson A (1981) Red cell filterability and chronic renal failure. Scand J Clin Lab Invest 41 (Suppl 156): 177–179

    PubMed  Google Scholar 

  24. Delobel J, Iaru T, Herve MA, Claisse JF, Dieval J (1990) Filterability in children. Scand J Clin Lab Invest 41 (Suppl 156): 49–51

    Google Scholar 

  25. Dintenfass L (1977) Theoretical aspects and clinical applications of the blood viscosity equation containing a term for the internal viscosity of the red cell. Blood Cells 3: 367–374

    Google Scholar 

  26. Dintenfass L (1985) Red cell rigidity, “Tk”, and filtration. Clin Hemorheology 5: 241–244

    Google Scholar 

  27. Dodds AJ, O'Reilly MJG, Yates CJP, Cotton LT, Flute PT, Dormandy JA (1979) Haemorrheological response to plasma exchange in Raynaud's syndrome. Br Med J 10: 1186–1187

    Google Scholar 

  28. Dodds AJ, Boyd MJ, Allen J, Bennett ED, Flute PT, Dormandy JA (1980) Changes in red cell deformability and other variables after myocardial infarction. Br Heart J 44: 508–511

    PubMed  Google Scholar 

  29. Dodds AJ, Matthews PN, Bailey MJ, Flute PT, Dormandy JA (1980) Changes in red cell deformability following surgery. Thromb Res 18: 561–565

    PubMed  Google Scholar 

  30. Dodson RA, Hinds TR, Vincenzi FF (1988) Pentoxifylline, diltiazem and A 23187: effects on deformability and volume of human red blood cells. Proc West Pharmacol Soc 31: 205–207

    PubMed  Google Scholar 

  31. Dormandy JA (1983) Red cell deformability. Eur Neurol 22 [Suppl 1]: 23–29

    PubMed  Google Scholar 

  32. Dormandy J, Boyd M, Ernst E (1981) Red cell filterability after myocardial infarction. Scand J Clin Lab Invest 41 [Suppl 156]: 195–198

    Google Scholar 

  33. Ehrly AM, Landgraf H (1981) Red blood cell filterability and occlusive arterial disease. Scand J Clin Lab Invest 41 [Suppl 156]: 181–184

    Google Scholar 

  34. Ekeström S, Lal Koul B, Sonnenfeld T (1983) Decreased red cell deformability following open-heart surgery. Scand J Cardiovasc Surg 17: 41–44

    Google Scholar 

  35. Ernst E (1987) Influence of regular physical activity on blood rheology. Eur Heart J 8 [Suppl G]: 59–62

    Google Scholar 

  36. Ernst E (1989) Effects of n-3 fatty acids on blood rheology. J Intern Med 225 [Suppl 1]: 129–132

    PubMed  Google Scholar 

  37. Ernst E, Matrai A (1986) Altered red and white blood cell rheology in type-2 diabetes. Diabetes 35: 1412–1415

    PubMed  Google Scholar 

  38. Ernst EEW, Matrai A (1987) Intermittent claudication, exercise and blood rheology. Circulation 76: 1110–1114

    PubMed  Google Scholar 

  39. Ernst E, Matrai A (1988) Diltiazem alters blood rheology. Pharmacotherapeutica 5: 213–216

    Google Scholar 

  40. Ernst E, Weihmayr T, Schmid M, Baumann M, Matrai A (1986) Cardiovascular risk factors and hemorheology. Physical fitness, stress and obesity. Atherosclerosis 59: 263–269

    PubMed  Google Scholar 

  41. Ernst E, Schmidt-Pauly E, Muhlig P, Matrai A (1987) Blood viscosity in patients with bone fractures and long-term bed rest. Br J Surg 74: 301–302

    PubMed  Google Scholar 

  42. Ernst E, Matrai A, Marshall M (1988) Blood rheology in patients with transient ischaemic attacks. Stroke 19: 634–636

    PubMed  Google Scholar 

  43. Ernst E, Saradeth T, Achhammer G (1990) Blood cell rheology-influence of exercise and omega-3 fatty acids. Clin Hemorheol 10: 157–163

    Google Scholar 

  44. Fisher TC, Sowemimo-Coker SO, Wenby RB (1991) An improved approach for studying RBC Theological behaviour with the Cell Transit Analyser. Presented at the 7th European Conference on Clinical Haemorrheology. July 1991, Southampton

  45. Franzini E, Driss F, Darcet P, Driss Fr, Daoud F, Thao Chan M (1988) Influence of physico-chemical and pathological factors on the individual red cell transit time. Clin Hemorheol 8: 485–492

    Google Scholar 

  46. Gelmini G, Delsignore R, Coiro V (1987) Evaluation of erythrocyte deformability in pre- and postmenopausal women. Maturitas 9: 275–281

    PubMed  Google Scholar 

  47. Gelmini G, Bacchi Modena A, Bresciani D, Fiaschetti D, Delsignore R, Coiro V (1989) Effects of ovariectomy on blood and plasma viscosity, fibrinogen, and whole blood filterability. Maturitas 11: 199–207

    PubMed  Google Scholar 

  48. Groner W, Mohandas N, Bessis M (1980) A new optical technique for measurement of erythrocyte deformability with the ektacytometer. Clin Chem 26: 1435–1442

    PubMed  Google Scholar 

  49. Hakim TS, Macek AS (1988) Effect of hypoxia on erythrocyte deformability in different species. Biorheology 25: 857–868

    PubMed  Google Scholar 

  50. Hakoshima A, Goto H, Abe K, Benson KT, Moran JF, Arakawa K (1989) Alteration of red cell deformability during extracorporeal bypass: membrane vs. bubble oxygenator. J Cardiothoracic Anesth 3: 189–192

    Google Scholar 

  51. Haradin AR, Weed RI, Reed CF (1969) Changes in physical properties of stored erythrocytes. Transfusion 9: 229–237

    PubMed  Google Scholar 

  52. Hardeman MR, Goedhart P, Breederveld B (1987) Laser diffraction ellipsometry of erythrocytes under controlled shear stress using a rotational viscosimeter. Clin Chim Acta 165: 227–234

    PubMed  Google Scholar 

  53. Hardeman MR, Bauersachs RM, Meiselman HJ (1988) RBC laser diffractometry and RBC aggregometry with a rotational viscometer: comparison with rheoscope and Myrenne aggregometer. Clin Hemorrheol 8: 581–593

    Google Scholar 

  54. Hirayama T, Yamaguchi H, Allers M, Roberts D (1985) Evaluation of red cell damage during cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg 19: 263–265

    PubMed  Google Scholar 

  55. Hirayama T, Yamaguchi H, Allers M, Roberts D, William-Olsson G (1985) Changes in red cell deformability associsated with anaesthesia and cardiopulmonary bypass in open-heart surgery. Scand J Thorac Cardiovasc Surg 19: 257–262

    PubMed  Google Scholar 

  56. Hirayama T, Roberts D, Allers M, Belboul A, Al-Khaja N, William-Olsson G (1988) Association between bleeding and reduced red cell deformability following cardiopulmonary bypass. Scand J THorac Cardiovasc Surg 22: 171–174

    PubMed  Google Scholar 

  57. Hirayama T, Roberts D, Allers M, Belboul A, Al-Khaja N, William-Olsson G (1988) Association between pulmonary dysfunction and reduced red cell deformability following cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg 22: 175–177

    PubMed  Google Scholar 

  58. Hirayama T, Roberts D, Allers M, Belboul A, Al-Khaja N, William-Olsson G (1988) Association between arrhythmias and reduced red cell deformability following cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg 22: 179–180

    PubMed  Google Scholar 

  59. Hurd TC, Dasmahapatra KS, Rush BF Jr, Machiedo GW (1988) Red blood cell deformability in human and experimental sepsis. Arch Surg 123: 217–220

    PubMed  Google Scholar 

  60. Inauen W, Stäubli M, Descoeudres C, Galeazzi RL, Straub PW (1982) Erythrocyte deformability in dialyzed and non-dialyzed uraemic patients. Eur J Clin Invest 12: 173–176

    PubMed  Google Scholar 

  61. International Committee for Standardization in Hematology, Expert Panel on Blood Rheology (1986) Guidelines for measurement of blood viscosity and erythrocyte deformability. Clin Hemorrheol 6: 539–453

    Google Scholar 

  62. Johnson RM (1989) Ektacytometry of red blood cells. Methods Enzymol 173: 35–54

    PubMed  Google Scholar 

  63. Juhan I, Vague P, Bounocore M, Moulin JP, Calas MF, Vialettes B, Verdot JJ (1981) Effects of insulin on erythrocyte deformability in diabetics — relationship between erythrocyte deformability and platelet aggregation. Scand J Clin Lab Invest 41 [Suppl 156]: 159–164

    PubMed  Google Scholar 

  64. Juhan I, Vague P, Buonocore M, Jouve R, Moulin JP, Vialettes B (1982) Abnormalities of erythrocyte deformability and platelet aggregation in insulin-dependent diabetics corrected by insulin in vivo and in vitro. Lancet 1: 535–537

    PubMed  Google Scholar 

  65. Keidan AJ, Stuart J (1987) Rheological effects of bed rest in sickle cell disease. J Clin Pathol 40: 1187–1188

    PubMed  Google Scholar 

  66. Kenny MW, Meakin M, Stuart J (1981) Measurement of erythrocyte filterability using washed-erythrocyte and whole-blood methods. Clin Hemorrheol 1: 135–146

    Google Scholar 

  67. Kikuchi Y, Koyama Y, Tozawa S, Arai T, Jorimoto M, Kakiuchi Y (1982) Red blood cell deformability in renal failure. Nephron 30: 8–14

    PubMed  Google Scholar 

  68. Költringer P, Eber O, Wakonig P, Kima G, Lind P (1988) Hypothyroidism and the influence on human blood rheology. J Endocrinol Invest 11: 267–272

    PubMed  Google Scholar 

  69. LaCelle PJ (1970) Alteration of membrane deformability in hemolytic anemias. Semin Hematol 7: 355–371

    PubMed  Google Scholar 

  70. LaCelle PL, Smith BD (1981) Biochemical factors influencing erythrocyte deformability and capillary entrance phenomena. Scand J Clin Lab Invest 41 [Suppl 156]: 145–149

    Google Scholar 

  71. Lande WM, Andrews RL, Clark MR, Braham NV, Black DM, Embury SH, Mentzer WC (1988) The incidence of painful crisis in homozygous sickle cell disease: correlation with red cell deformability. Blood 72: 2056–2059

    PubMed  Google Scholar 

  72. Lerche D, Schmidt R, Zoellner K, Meier W, Paulitschke M, Distler B, Klinkmann H (1989) Rheology in whole blood and red blood cells under recombinant human erythropoietin therapy. Contrib Nephrol 76: 299–305

    PubMed  Google Scholar 

  73. Lorient-Roudaut MF, Manuau JP, Bricaud H, Boisseau MR (1981) Filterability and cerebro-vascular thrombosis. Scand J Clin Lab Invest 41 [Suppl 156]: 203–208

    PubMed  Google Scholar 

  74. Lowe GDO (1981) Red cell deformability — methods and terminology. Clin Hemorrheol 1: 513–526

    Google Scholar 

  75. Lowe GDO (1984) Evaluation of Theological therapy by orally administered drugs. Clin Hemorrheol 4: 159–175

    Google Scholar 

  76. Lowe GDO, Drummond MM, Belch JJF, Lowe JM, MacCuish AC, Manderson WG (1979) Abnormal blood rheology in young male diabetics with and without retinopathy. Thromb Haemost 42 (Abstract): 107

    Google Scholar 

  77. Lucas GS, Simms MH, Caldwell NM, Alexander SJC, Stuart J (1984) Haemorheological effects of prostaglandin E1 infusion in Raynaud's syndrome. J Clin Pathol 37: 870–873

    PubMed  Google Scholar 

  78. Machiedo GW, Powell RJ, Rush BF Jr, Swislocki NI, Dikdan G (1989) The incidence of decreased red blood cell deformability in sepsis and the association with oxygen free radical damage and multiple-system organ failure. Arch Surg 124: 1386–1388

    PubMed  Google Scholar 

  79. McMillan DE, Utterback NG, La Puma J (1978) Reduced erythrocyte deformability in diabetes. Diabetes 27: 895–901

    PubMed  Google Scholar 

  80. Meiselman HJ (1981) Morphological determinants of red cell deformability. Scand J Clin Lab Invest 41 [Suppl 156]: 27–34

    Google Scholar 

  81. Mohandas N, Philips WM, Bessis M (1979) Red blood cell deformability and hemolytic anemias. Semin Hematol 16: 95–114

    PubMed  Google Scholar 

  82. Mohandas N, Clark MR, Jacogs MS, Shohet SB (1980) Analysis of factors regulating erythrocyte deformability. J Clin Invest 66: 563–573

    PubMed  Google Scholar 

  83. Müller R (1978) Modification of disturbed flow properties of blood: a promising avenue in the treatment of peripheral vascular diseases. Pharmatherapeutica 3 [Suppl 1]: 5–16

    Google Scholar 

  84. Müller R (1981) Hemorheology and peripheral vascular disease: a new therapeutic approach. J Med 12: 209–235

    PubMed  Google Scholar 

  85. Müller R, Musikic P (1987) Hemorheology in surgery — a review. Angiology 8: 581–592

    Google Scholar 

  86. Nakao M, Nakao T, Yamazoe S (1960) Adenosine triphosphatase and maintenance of shape of the human red cells. Nature 187: 945

    PubMed  Google Scholar 

  87. Nash GB, O'Brien E, Gordon-Smith EC, Dormandy JA (1989) Abnormalities in the mechanical properties of red blood cells caused byPlasmodium falciparum. Blood 74: 855–861

    PubMed  Google Scholar 

  88. Nicolau CT, Teitel P, Fotino M, Butoianu E, Taigar St (1964) Alterations of erythrocyte plasticity in blood diseases. Sangre 9: 282–288

    Google Scholar 

  89. Norcliffe D, Brown MJ (1988) An evaluation of “Tk” as an indicator of red cell rigidity. Clin Hemorheol 8: 797–800

    Google Scholar 

  90. Ott E, Lechner H (1982) Hemorheologic and hemodynamic aspects of cerebrovascular disease. Pathol Biol 30: 611–614

    Google Scholar 

  91. Ott E, Korner E, Lechner H (1988) Hemorheologic treatment of cerebral reversible ischemic episodes with pentoxifyllinea prospective study. Angiology 6: 520–525

    Google Scholar 

  92. Ozanne P, Le Devehat C, Boudart D, Lemoine A, Leloup R, Fournier M (1981) Whole blood filterability in diabetics. Influence of age, complications and duration of diabetes. Scand J Clin Lab Invest 41 [Suppl 156]: 259–260

    Google Scholar 

  93. Pollock S, Harrison MJG, O'Connell G (1982) Erythrocyte deformability in multiple sclerosis. J Neurol Neurosurg Psychiatry 45: 762–762

    PubMed  Google Scholar 

  94. Powell RJ, Machiedo GW, Rush BF, Dikdan G (1989) Effect of α-tocopherol on red cell deformability and survival in sepsis. Curr Surg 5: 380–382

    Google Scholar 

  95. Reid HL, Barnes AJ, Lock PJ, Dormandy JA, Dormandy TL (1976) A simple method for measuring erythrocyte deformability. J Clin Pharmacol 29: 855–858

    Google Scholar 

  96. Reid HL, Dormandy JA, Barnes AJ, Lock PJ, Dormandy TL (1976) Impaired red cell deformability in peripheral vascular disease. Lancet 1: 666–667

    PubMed  Google Scholar 

  97. Reinhart WH, Stäubli M, Straub PW (1983) Impaired red cell filterability with elimination of old red blood cells during a 100-km race. J Appl Physiol 54: 827–830

    PubMed  Google Scholar 

  98. Reinhart WH, Danoff SJ, King RG, Chien S (1985) Rheology of fetal and maternal blood. Pediatr Res 19: 147–153

    PubMed  Google Scholar 

  99. Reinhart WH, Bartsch P, Straub PW (1989) Red blood cell morphology after a 100-km run. Clin Lab Haematol 11: 105–110

    PubMed  Google Scholar 

  100. Rhoads DL, Yamasaki Y, Way EL (1985) Opiates reduce human red blood cell deformability. Alcohol Drug Res 6: 229–230

    Google Scholar 

  101. Rhoads DL, Wei L, Lin ET, Rezvani A, Way EL (1986) Opioids and rat erythrocyte deformability. NIDA Res Monogr 75: 121–124

    PubMed  Google Scholar 

  102. Roberts D, Dernevik L, Hirayama T, Yamaguchi H, Allers M, William-Olsson G (1987) Reduced pre- and postoperative mortality following the use of urea during elective cardiopulmonary bypass. J Cardiovasc Surg 28: 75–80

    Google Scholar 

  103. Rodgers BD, Hreshchyshyn MM, Lee RV, Rodgers D, Ambrus CM (1988) Erythrocyte filterability in normal and high-risk pregnancy. Obstet Gynecol 71: 192–197

    PubMed  Google Scholar 

  104. Schmid-Schönbein H (1975) Erythrocyte rheology and the optimization of mass-transport in the microcirculation. Blood Cells 1: 285–306

    Google Scholar 

  105. Schmid-Schönbein H, Volger E (1976) Red cell aggregation and red cell deformability in diabetes. Diabetes 25: 879–902

    Google Scholar 

  106. Schneider R (1989) Results of hemorheologically active treatment with pentoxifylline in patients with cerebrovascular disease. Angiology 11: 987–993

    Google Scholar 

  107. Schneider R, Korber N, Zeumer H, Kiesewetter H, Ringelstein EB, Brockmann M (1985) The haemorheological features of lacunar strokes. J Neurol 232: 357–362

    PubMed  Google Scholar 

  108. Simpson LO, Shand BI, Olds RJ, Larking PW, Arnott MJ (1987) Red cell and hemorheological changes in multiple sclerosis. Pathology 19: 51–55

    PubMed  Google Scholar 

  109. Solerte S, Fioravanti M, Spinillo A, Ferrari E, Guaschino S (1988) Association between hormonal and haemorheological changes during the menstrual cycle in healthy women. Br J Obstet Gynaecol 95: 1305–1308

    PubMed  Google Scholar 

  110. Stuart J (1985) Erythrocyte rheology. J Clin Pathol 38: 965–977

    PubMed  Google Scholar 

  111. Stuart J (1990) Measurement of red cell deformability by filtration techniques. Tijdschr Nederlands Vereniging Klin Chem 15: 98–102

    Google Scholar 

  112. Stuart J, Stone PCW, Bilto YY, Keidan AJ (1987) Oxpentifylline and citiedil citrate improve deformability of dehydrated sickle cells. J Clin Pathol 40: 1182–1186

    PubMed  Google Scholar 

  113. Sutera SP, Gardner RA, Boylan CW, Carroll GL, Chang KC, Marvel JS, Kilo C, Gonen G, Williamson JR (1985) Agerelated changes in deformability of human erythrocytes. Blood 65: 275–282

    PubMed  Google Scholar 

  114. van Leeuwenhoek A (1974) As cited in the 65th missive. Microcirculation Bench Mark Papers in Human Physiology, Hutchinson and Ross, Stroudsburg

  115. Vasselon C, Herrmann T, Geyssant A, Brizard CP, Healy JC (1981) RBC filterability in β-thalassemia. Scand J Clin Lab Invest 41 [Suppl 156]: 265–267

    Google Scholar 

  116. Weed RI (1970) The importance of erythrocyte deformability. Am J Med 49: 147–151

    PubMed  Google Scholar 

  117. Weed RI, LaCelle PL, Merrill EW (1969) Metabolic dependence of red cell deformability. J Clin Invest 48: 795–809

    PubMed  Google Scholar 

  118. Wegner G, Kucera W (1987) Changes in erythrocyte deformability in blood preservation. Z Gesamte Inn Med 42 (Abstract): 575–581

    PubMed  Google Scholar 

  119. Yamaguchi H, Allers M, Roberts D (1984) The effect of urea on red cell deformability during cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg 18: 119–122

    PubMed  Google Scholar 

  120. Zhu JC, Stone PCW, Stuart J (1989) Measurement of erythrocyte deformability by Cell Transit Analyser. Clin Hemorheol 9: 897–908

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokken, F.C., Kedaria, M., Henny, C.P. et al. The clinical importance of erythrocyte deformability, a hemorrheological parameter. Ann Hematol 64, 113–122 (1992). https://doi.org/10.1007/BF01697397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01697397

Key words

Navigation