Skip to main content
Log in

The mesangium and glomerulonephritis

Das Mesangium und Glomerulonephritis

  • Referate
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The mesangium of the glomerular capillary ultrafilter is a specialized pericapillary tissue. In adult mammals its location is limited to the axial portions of the loop, but it extends peripherally to encircle the capillary in the fetal state and in certain glomerular diseases. It contains predominantly intrinsic mesangial cells, which resemble contractile endocytic capillary pericytes, and which are embedded in the extracellular matrix. In addition, the mesangial space normally harbors few resident Ia-antigen bearing, immune-competent cells and rare transient monocyte-macrophages. Due to its unique location between the fenestrated endothelial lining of the capillary lumen and the glomerular basement membrane, constituting the filtration barrier, the mesangium is prone to deposition of potentially noxious plasma constituents and filtration residues, such as phlogogenic foreign proteins and immune complexes. The determinants of the mesangial entry, uptake and removal of such materials are presently incompletely understood but they are thought to include the amount and nature of the deposit, local hemodynamic factors and the ability of the mesangium to degrade or to eliminate the deposited agent. Histopathologic studies of various human and experimental glomerular diseases reveal that increased mesangial cell proliferation and matrix widening may occur either in direct response to deposits or induced by mediators released from inflammatory cells, such as monocyte-macrophages. While the functional damage to the glomerular filter is usually mild when the reaction is limited to the mesangial space, it is more pronounced when the mesangial abnormalities are secondary to subendothelial deposits of the peripheral capillary wall. Recent experimental data indicate that a mesangial inability in removing deposited material may develop in certain chronic glomerular disorders characterized by marked proteinuria, glomerular hypertension and hyperfiltration or accumulation of matrix material. Such states of mesangial dysfunction may play a critical role in the pathogenesis of progressive glomerular sclerosis. It is concluded that better understanding of the pathophysiology of the mesangium would be valuable for designing more effective diagnostic and therapeutic approaches to patients with glomerular disease.

Zusammenfassung

Im glomerulären Ultrafilter findet sich das Mesangium als ein spezialisiertes perikapilläres Gewebe. Bei ausgewachsenen Säugern ist es auf die axialen Abschnitte der Kapillarschlingen begrenzt, während es im Foetalstadium und bei manchen glomerulären Erkrankungen die Kapillare völlig umgibt. Die anzahlmäßig weit überwiegenden eigentlichen Mesangiumzellen, die in eine extrazelluläre Matrix eingebettet sind, besitzen die Fähigkeit zur Kontraktion und Endozytose und ähneln somit Kapillarperizyten. Zusätzlich sind im Mesangialraum normalerweise einige Ia-Antigen-positive, immunologisch kompetente Zellen angesiedelt und selten finden sich wandernde Monozyten-Makrophagen. Das Mesangium liegt zwischen dem gefensterten Endothel der Kapillare und der glomerulären Basalmembran, der eigentlichen Filtrationsbarriere. Aŭfgrund dieser ganz besonderen Lage ist das Mesangium prädestiniert für die Aufnahme von möglicherweise schädlichen Plasmabestandteilen und Filtrationsrückständen, wie z.B. entzündungsauslösenden Fremdeiweißen und Immunkomplexen. Die Faktoren, die mesangiale Aufnahme und Eliminierung von derartigen Substanzen bestimmen, sind derzeit nicht genau bekannt. Es wird angenommen, daß hierbei neben Menge und Eigenschaften der Ablagerungen auch hämodynamische Faktoren eine Rolle spielen, sowie die Fähigkeit des Mesangium, die abgelagerten Substanzen abzubauen oder zu entfernen. Histopathologische Untersuchungen verschiedener humaner und tierexperimenteller glomerulärer Erkrankungen zeigen, daß die mesangialen Veränderungen gewöhnlich aus Zellproliferation und Zunahme der Matrix bestehen. Sie stellen entweder eine direkte Reaktion auf die abgelagerte Substanz dar, oder sie werden durch Mediatoren induziert, die von Entzündungszellen, wie z.B. Monozyten-Makrophagen, freigesetzt worden sind. Ist eine solche Reaktion auf den Mesangialraum begrenzt, wird die glomeruläre Funktion gewöhnlich nur geringfügig beeinträchtigt. Hingegen findet sich eine stärker ausgeprägte Funktionseinbuße, wenn die mesangialen Schäden durch subendothelial abgelagertes Material in der peripheren Kapillarschlinge ausgelöst worden sind. Neuere experimentelle Ergebnisse weisen daraufhin, daß sich eine mesangiale Insuffizienz hinsichtlich der Elimination von Ablagerungen bei manchen chronischen glomerulären Störungen entwickeln kann, zumal wenn diese durch starke Proteinurie, glomeruläre Blutdruckerhöhung und Hyperfiltration oder Matrixzunahme gekennzeichnet sind. Derartige Zustände von „mesangialer Dysfunktion“ könnten eine entscheidende Rolle in der Pathogenese von fortschreitender glomerulärer Sklerose spielen. Eine Verbesserung unserer Kenntnisse über die Pathophysiologie des Mesangium wäre von Bedeutung für die Entwicklung wirksamer diagnostischer und therapeutischer Maßnahmen bei Patienten mit glomerulären Krankheiten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appel GB, Silva FG, Pirani CL, Meltzer JI, Estes D (1978) Renal involvement in systemic lupus erythematosus, (SLE): A study of 56 patients emphasizing histologic classification. Medicine (Baltimore) 57:371–410

    Google Scholar 

  2. Arakawa M, Kimmelstiel P (1969) Circumferential mesangial interposition. Lab Invest 21:276–284

    Google Scholar 

  3. Ausiello DA, Kreisberg JI, Roy C, Karnovsky MJ (1980) Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J Clin Invest 65:754–760

    Google Scholar 

  4. Baldwin DS (1982) Chronic glomerulonephritis: Nonimmunologic mechanisms of progressive glomerular damage. Kidney Int 21:109–120

    Google Scholar 

  5. Bargmann W (1931) Über Struktur und Speicherungsvermögen des Nierenglomerulus. Z Zellforsch Mikroskop Anat 14:73–137

    Google Scholar 

  6. Batsford SR, Takamiya H, Vogt A (1980) A model of in situ immune complex glomerulonephritis in the rat employing cationized ferritin. Clin Nephrol 14:211–216

    Google Scholar 

  7. Becker CG (1972) Demonstration of actomyosin in mesangial cells of the renal glomerulus. Am J Pathol 66:97–107

    Google Scholar 

  8. Bencosme SA, Morrin P (1967) Ultrastructural pathology of the glomerulus. In: Dalton AJ, Haguenau F (eds) Ultrastructure in biological systems, Vol II. Academic Press, New York London, pp 143–227

    Google Scholar 

  9. Bernik MB (1969) Contractile activity of human glomeruli in culture. Nephron 6:1–10

    Google Scholar 

  10. Blantz RC (1980) The glomerulus, passive filter or regulatory organ? Klin Wochenschr 58:957–964

    Google Scholar 

  11. Bohle A, Herfarth C (1958) Zur Frage eines intercapillaren Bindegewebes im Glomerulum der Niere des Menschen. Virchows Arch Path Anat 331:573–590

    Google Scholar 

  12. Bohrer MP, Deen WM, Robertson CR, Brenner BM (1977) Mechanism of angiotensin II-induced proteinuria in the rat. Am J Physiol 2:F13-F21

    Google Scholar 

  13. Border WA, Kamil ES, Ward HJ, Cohen AH (1981) Antigenic charge as a determinant of immune complex localization in the rat glomerulus. Lab Invest 45:442–449

    Google Scholar 

  14. Bradfield JWB, Cattell V (1977) The mesangial cell in glomerulonephritis: I. Mechanisms of hypercellularity in experimental immune complex glomerulonephritis. Lab Invest 36:481–486

    Google Scholar 

  15. Brenner BM, Bohrer MP, Baylin C, Deen WM (1977) Determinants of glomerular permselectivity: Insights derived from observation in vivo. (Editorial) Kidney Int 12:229–237

    Google Scholar 

  16. Burkholder PM (1982) Functions and pathophysiology of the glomerular mesangium. (Editorial) Lab Invest 46:239–241

    Google Scholar 

  17. Camazin SM, Ryan GB, Unanue ER, Karnovsky MJ (1976) Isolation of phagocytic cells from the rat renal glomerulus. Lab Invest 35:315–316

    Google Scholar 

  18. Cotran RS (1978) Monocytes, proliferation and glomerulonephritis. (Editorial) J Lab Clin Med 92:837–840

    Google Scholar 

  19. DeMartino C, Natali PG, Zamboni L, Accinni L (1976) Ultrastructural study of mesangial cells and their relationship to smooth muscle cells of glomerular arterioles. Contr Nephrol 2:17–24

    Google Scholar 

  20. Dubois CH, Foidart JB, Hautier MB, Dechenne CA, Lemaire MJ, Mathieu PR (1981) Proliferative glomerulonephritis in rats: Evidence that mononuclear phagocytes infiltrating the glomeruli stimulate the proliferation of endothelial and mesangial cells. Eur J Clin Invest 11:91–104

    Google Scholar 

  21. Ehrich JHH, Sterzel RB, Deicher HRG, Foellmer HG (1981) Rat malarial glomerulonephritis: An experimental model of post-infectious glomerular injury. Virchows Arch (Cell Pathol) 37:343–356

    Google Scholar 

  22. Elema JD, Hoyer J, Vernier RL (1976) The glomerular mesangium: Uptake and transport of intravenously injected colloidal carbon in the rat. Kidney Int 9:395–406

    Google Scholar 

  23. Farquhar MG, Palade GE (1961) Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J Exp Med 144:699–715

    Google Scholar 

  24. Farquhar MG, Palade GE (1962) Functional evidence for the existence of a third cell type in the renal glomerulus. J Cell Biol 13:55–87

    Google Scholar 

  25. Fermuth FG, Kelemen WA, Pollack AD (1967) Immune complex disease. II. The role of circulatory dynamics and glomerular filtration in the development of experimental glomerulonephritis. Johns Hopkins Med J 120:252–257

    Google Scholar 

  26. Germuth FG, Senterfit LB, Dreesman GR (1972) Immune complex disease: V. The nature of the circulating complexes associated with glomerular alterations in the chronic BSA-rabbit system. Johns Hopkins Med J 130:344–357

    Google Scholar 

  27. Germuth FG, Rodriguez E (1973) Immunopathology of the renal glomerulus. Boston, Little, Brown and Co, pp 15–161

    Google Scholar 

  28. Grond J, Elema JD (1981) Glomerular mesangium. Analysis of the increased activity observed in experimental acute aminonucleoside nephrosis in the rat. Lab Invest 45:400–409

    Google Scholar 

  29. Haakenstadt AO, Striker GE, Mannik M (1976) The glomerular deposition of soluble immune complexes prepared with reduced and alkylated antibodies and with intact antibodies in mice. Lab Invest 35:293–301

    Google Scholar 

  30. Hart NJ, Fabre JW (1981) Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissue of rat heart and other tissues, but not brain. J Exp Med 154:347–361

    Google Scholar 

  31. Hebert LA, Allhiser CL, Koethe SM (1978) Some hemodynamic determinants of immune complex trapping by the kidney. Kidney Int 14:452–465

    Google Scholar 

  32. Hecht B, Siegel N, Adler M, Kashgarian M, Hayslett JP (1976) Prognostic indices in lupus nephritis. Medicine (Baltimore) 55:163–181

    Google Scholar 

  33. Hickman CP, Trump BF (1969) The kidney: In: Hoar WS, Randall DJ, Fish (eds) Physiology, Vol I. Academic Press, New York, pp 91–230

    Google Scholar 

  34. Hoffsten PE, Swerdlin A, Bartell M, Hill CL, Venverloh J, Brotherson K, Klahr S (1979) Reticuloendothelial and mesangial function in murine immune complex glomerulonephritis. Kidney Int 15:144–159

    Google Scholar 

  35. Holdsworth SR, Glasgow EF, Thomson NM, Atkins RC (1978) Normal human glomerular cells in culture. J Pathol 126:231–237

    Google Scholar 

  36. Holdsworth SR, Neale TJ, Wilson CB (1981) Abrogation of macrophage-dependent injury in experimental glomerulonephritis in the rabbit. Use of antimacrophage serum. J Clin Invest 688:686

    Google Scholar 

  37. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: A potentially adverse response to renal ablation. Am J Physiol 241:F85-F93

    Google Scholar 

  38. Hostetter TH, Brenner BM (1981) Glomerular adaptations to renal injury. In: Brenner BM, Stein JH (eds) Contemp Issues in Nephrol Vol 7. Churchill, Livingstone, pp 1–27

    Google Scholar 

  39. Hoyer JR, Elema JD, Vernier RL (1976) Unilateral renal disease in the rat: II. Glomerular mesangial uptake of colloidal carbon in unilateral aminonucleoside nephrosis and nephrotoxic serum nephritis. Lab Invest 34:250–255

    Google Scholar 

  40. Huhn D, Steiner JW, Movat HZ (1962) Die Feinstruktur des Mesangiums im Nierenglomerulum von Hund und Maus. Z Zellforsch 56:213–230

    Google Scholar 

  41. Hunt JS, Jackson AE, Day WA, McGiven AR (1981) Mouse glomerular culture. Br J Exp Path 62:52–58

    Google Scholar 

  42. Iidaka K, McCoy J, Kimmelstiel P (1968) The glomerular mesangium. A quantitative analysis. Lab Invest 19:573–579

    Google Scholar 

  43. Ishikawa Y, Wada T, Sakaguchi H (1980) The possibility of three types of cells in cultured glomeruli in vitro. Am J Pathol 100:779–790

    Google Scholar 

  44. Jones DB (1951) Inflammation and repair of the glomerulus. Am J Pathol 27:991–1009

    Google Scholar 

  45. Jones DB, Mueller CB, Menefee M (1962) The cellular and extracellular morphology of the glomerular stalk. Am J Pathol 41:373–380

    Google Scholar 

  46. Kanwar YS, Farquar M (1979) Anionic sites in the glomerular basement membrane. J Cell Biol 81:137–153

    Google Scholar 

  47. Kashgarian M (1974) Lipoid nephrosis and focal sclerosis: Distinct entities or spectrum of disease. Nephron 13:105–108

    Google Scholar 

  48. Kazimierczak J (1980) A study by scanning (SEM) and transmission (TEM) electron microscopy of the glomerular capillaries in developing rat kidney. Cell Tissue Res 212:241–255

    Google Scholar 

  49. Keane WF, Raij L (1980) Impaired mesangial clearance of macromolecules in rats with chronic mesangial ferritinantiferritin immune complex deposition. Lab Invest 43:500–508

    Google Scholar 

  50. Kijlstra A, van der Lelij A, Knutson DW, Fleuren GJ, Van Es LA (1978) The influence of phagocyte function on glomerular localization of aggregated IgM in rats. Clin Exp Immunol 32:207–217

    Google Scholar 

  51. Kuhn K, Sterzel RB, Stolte H, Reale E (1976) Mesangial cells in different vertebrate kidneys: a thin section and freeze fracture study. Contrib Nephrol 2:9–16

    Google Scholar 

  52. Kurtz SM, McManus JFA (1959) Experimental and laboratory reports. A reconsideration of the development, structure, and disease of the human renal glomerulus. Am Heart J 58:357–371

    Google Scholar 

  53. Latta H, Maunsbach AB, Madden SC (1960) The centrolobular region of the renal glomerulus studied by electron microscopy. J Ultrastr Res 4:455–472

    Google Scholar 

  54. Latta H (1973) Ultrastructure of the glomerulus and juxtaglomerular apparatus. In: Handbook of Physiology (Renal Physiology). Geiger SR, American Physiological Society, pp 1–29

  55. Latta H (1980) The multipotential nature of mesangial cells. Biol Cellulaire 39:245–248

    Google Scholar 

  56. Lee S, Vernier RL (1980) Immunoelectron microscopy of the glomerular mesangial uptake and transport of aggregated human albumin in the mouse. Lab Invest 42:44–58

    Google Scholar 

  57. Leiper JM, Thomson D, MacDonald MK (1977) Uptake and transport of imposil by the glomerular mesangium in the mouse. Lab Invest 37:526–533

    Google Scholar 

  58. Linder E, Miettinen A, Tonroth T (1980) Fibronectin as a marker for the glomerular mesangium in immunohistology of kidney biopsies. Lab Invest 42:70–75

    Google Scholar 

  59. Lovett DH, Ryan JL, Kashgarian M, Sterzel RB (1982) Lysosomal enzymes in glomerular cells of the rat. Am J Pathol 107:161–166

    Google Scholar 

  60. Lovett DH, Sterzel RB, Kashgarian M, Ryan JL (1982) Neutral proteinase activity produced in vitro by cells of the glomerular mesangium. Kidney Int (in press)

  61. Magil AB, Wadsworth MB, Loewen M (1981) Monocytes and human renal glomerular disease. Lab Invest 44:27–33

    Google Scholar 

  62. Mancilla-Jimenez R, Bellon B, Kuhn J, Belair MF, Rouchon M, Druet P, Bariety J (1982) Phagocytosis of heat-aggregated immunoglobulins by mesangial cells. An immunoperoxidase and acid phosphatase study. Lab Invest 46:243–253

    Google Scholar 

  63. Mauer SM, Fish AJ, Blau EB, Michael AF (1972) The glomerular mesangium: I. Kinetic studies of macromolecular uptake in normal and nephrotic rats. J Clin Invest 51:1092–1101

    Google Scholar 

  64. Mauer SM, Michael AF, Fish AJ, Brown DM (1972) Spontaneous immunoglobulin and complement deposition in glomeruli of diabetic rats. Lab Invest 27:488–494

    Google Scholar 

  65. Mauer SM, Sutherland DER, Howard RJ, Fish AJ, Najarian JS, Michael AF (1973) The glomerular mesangium: III. Acute immune mesangial injury: A new model of glomerulonephritis. J Exp Med 137:553–570

    Google Scholar 

  66. Mauer SM, Fish AJ, Day N, Michael AF (1974) The glomerular mesangium: II. Studies of macromolecular uptake in nephrotoxic nephritis in rats. J Clin Invest 53:431–439

    Google Scholar 

  67. Mauer SM, Steffes MW, Azar S, Sandberg SK, Brown DM (1978) The effect of Goldblatt hypertension on development of the glomerular lesions of diabetes mellitus in the rat. Diabetes 27:738–744

    Google Scholar 

  68. Mauer SM, Shvil Y (1979) The glomerular mesangium. In: Black D, Jones NF (eds) Renal Disease, 4th edn. Blackwell, Oxford, pp 93–106

    Google Scholar 

  69. Michael AF, Fish AJ, Good RA (1967) Glomerular localization and transport of aggregated proteins in mice. Lab Invest 17:14–29

    Google Scholar 

  70. Michael AF, Keane WF, Raij L, Vernier RL, Mauer SM (1980) The glomerular mesangium. Kidney Int 17:141–154

    Google Scholar 

  71. Michielsen P, Creemers F (1967) The structure and function of the glomerular mesangium. In: Dalton AJ, Haguenau F (eds) Ultrastructure in Biological Systems, Vol 2. Academic Press, New York London, pp 57–72

    Google Scholar 

  72. Monga G, Mazzucco G, di Belgiojoso GB, Busnach G (1981) Monocyte infiltration and glomerular hypercellularity in human acute and persistent glomerulonephritis. Lab Invest 44:381–387

    Google Scholar 

  73. von Möllendorff W (1930) Der Exkretionsapparat. In: von Möllendorf W, Handbuch der Mikroskopischen Anatomie des Menschen, Vol 7, Harn- und Geschlechtsapparat. Springer, Berlin, pp 1–328

    Google Scholar 

  74. Nakashima Y, Hirose S, Hamashima Y (1980) Proliferation of cultured rabbit renal glomerular cells stimulated by platelet factor. Acta Pahol Jpn 30:1–7

    Google Scholar 

  75. Oberley TD, Barber TA, Burkholder PM, Huang CC (1979) Cytochemical and morphologic characteristics of cultured adult guinea pig glomerular cells. Invest Cell Pathol 2:27–43

    Google Scholar 

  76. Olivetti G, Anversa P, Melissari M, Loud AV (1980) Morphometry of the renal corpuscle during postnatal growth and compensatory hypertrophy. Kidney Int 17:438–454

    Google Scholar 

  77. Olivetti G, Kithier K, Giacomelli F, Wiener J (1981) Glomerular permeability to endogenous proteins in the rat. Effects of acute hypertension. Lab Invest 44:127–137

    Google Scholar 

  78. Osathanondh V, Potter EL (1966) Development of human kidney as shown by microdissection. V. Development of vascular pattern of glomerulus. Arch Pathol 82:403–411

    Google Scholar 

  79. Osborne MJ, Droz B, Meyer P, Morel F (1975) Angiotensin II: Renal localization in glomerular mesangial cells by autoradiography. Kidney Int 8:245–254

    Google Scholar 

  80. Pak Poy RKF (1957) Electron microscopy of the amphibian renal glomerulus. Austral J Exp Biol 35:583–594

    Google Scholar 

  81. Pak Poy RKF (1958) Electron microscopy of the piscine (Carassius auratus) renal glomerulus. Austral J Exp Biol 36:191–210

    Google Scholar 

  82. Pessina AC, Hulme B, Peart WS (1972) Renin induced proteinuria and the effects of adrenalectomy. II. Morphology in relation to function. Proc Roy Soc Land B 180:61–71

    Google Scholar 

  83. Quadracci LJ, Striker GE (1970) Growth and maintenance of glomerular cells in vitro. Proc Soc Exp Biol Med 135:947–950

    Google Scholar 

  84. Raij L, Keane WF, Osswald H, Michael A (1979) Mesangial function in ureteral obstruction in the rat. Blockade of the efferent limb. J Clin Invest 64:1204–1312

    Google Scholar 

  85. Renkin EM, Robinson RR (1974) Glomerular ultrafiltration. New Engl J Med 290:785–792

    Google Scholar 

  86. Roll RJ, Madri JA, Albert J, Furthmayr H (1980) Codistribution of collagen types IV and AB2 in basement membranes and mesangium of the kidney. J Cell Biol 85:597–616

    Google Scholar 

  87. Schneeberger EE, Collins AB, Latta H, McCluskey RT (1977) Diminished glomerular accumulation of colloidal carbon in autologous immune complex nephritis. Lab Invest 37:9–19

    Google Scholar 

  88. Scheinman JI, Fish AJ, Brown DM, Michael AF (1976) Human glomerular smooth muscle (mesangial) cells in culture. Lab Invest 34:150–158

    Google Scholar 

  89. Scheinman JI, Fish AJ, Matas AJ, Michael AF (1978) The immunohistopathology of glomerular antigens. II. The glomerular basement membrane, actomyosin, and fibroblast surface antigens in normal diseased and transplanted human kidneys. Am J Pathol 90:71–84

    Google Scholar 

  90. Scheinman JI, Foidart JM, Gehron-Robey P, Fish AJ, Michael AF (1980) The immunohistology of glomerular antigens: IV. Laminin, a defined non-collagen basement membrane glycoprotein. Clin Immunol Immunopath 15:175–189

    Google Scholar 

  91. Schreiner GF, Cotran RS, Pardo V, Unanue ER (1978) A mononuclear cell component in experimental immunological glomerulonephritis. J. Exp Med 147:369–384

    Google Scholar 

  92. Schreiner GF, Kiely J-M, Cotran RS, Unanue ER (1981) Characterization of resident glomerular cells in the rat expressing Ia-determinants and manifesting genetically restricted interactions with lymphocytes. J Clin Invest 68:920–931

    Google Scholar 

  93. Schreiner GF, Cotran RS, Unanue ER (1981) Glomerular cell types and immune function. Proc 8th Int Cong Nephrol, Athens. Karger, Basel, pp 858–864

    Google Scholar 

  94. Schreiner GF, Cotran RS, Unanue ER (1982) The localization and origin of the Ia-bearing cells of the rat glomerulus. (Abstr) Kidney Int 21:205

    Google Scholar 

  95. Seelig HP, Seelig R (1974) Das glomeruläre Mesangium: einige immunpathologische Aspekte. Dtsch Med Wschr 99:1262–1267

    Google Scholar 

  96. Seiler MW, Hoyer JR, Krueger TE (1980) Altered localization of protamine-heparin complexes in aminonucleoside nephrosis. Lab Invest 43:9–17

    Google Scholar 

  97. Shigematsu H, Shishido H, Sano M, Kobayashi Y, Kondo Y, Okabayashi A (1976) Participation of monocytes in transient glomerular hypercellularity in acute glomerulonephritis of experimental animals and man. Contrib Nephrol 2:41–47

    Google Scholar 

  98. Smith RD, Wehner R (1980) Acute cytomegalovirus glomerulonephritis: An acute experimental model. Lab Invest 43:278–286

    Google Scholar 

  99. Sraer J, Foidart J, Chansel D, Mahieu P, Ardaillou R (1980) Prostaglandin synthesis by rat isolated glomeruli and glomerular cultured cells. Int J Biochem 12:203–207

    Google Scholar 

  100. Steffes MW, Brown DM, Mauer SM (1978) Diabetic glomerulopathy following unilateral nephrectomy in the rat. Diabetes 27:35–41

    Google Scholar 

  101. Stein HD, Feddergreen W, Kashgarian M, Sterzel RB (1982) The role of angiotensin II-induced hemodynamic changes on the mesangial deposition of ferritin in rats (submitted for publication)

  102. Sterzel RB, Krause PH, Kregeler M (1976) Experimental changes in the mesangial capacity to handle glomerular immune deposits in rats. Contrib Nephrol 2:66–75

    Google Scholar 

  103. Sterzel RB, Reale E, Mariss P, Krause PH, Kuhn K (1976) The mesangium and glomerular disease. In: Kluthe R, Vogt A, Batsford SR (eds) Glomerulonephritis. Thieme, Stuttgart, pp 120–133

    Google Scholar 

  104. Sterzel RB, Perfetto M, Seiler M, Kashgarian M, Hoyer JR (1982) Variable role of Ia-positive cells in mesangial uptake of tracers. (Abstr) Kidney Int 21:206

    Google Scholar 

  105. Sterzel RB, Ehrich JHH, Lucia H, Thomson D, Kashgarian M (1982) Mesangial disposal of glomerular immune deposits in acute malarial glomerulonephritis. Lab Invest 46:209–214

    Google Scholar 

  106. Sterzel RB, Pabst R (1982) The temporal relationship between glomerular cell proliferation and monocyte infiltration in experimental glomerulonephritis. Virchows Arch (Cell Pathol) 38:337–350

    Google Scholar 

  107. Striker GE, Mannik M, Tung MY (1979) Role of marrow-derived monocytes and mesangial cells in removal of immune complexes from renal glomeruli. J Exp Med 149:127

    Google Scholar 

  108. Striker GE, Killen PD, Farin FM (1980) Human glomerular cells in vitro: isolation and characterization. Transp Proc 12, Suppl 1:88–99

    Google Scholar 

  109. Striker GE, Killen PD, Farin FM, Werny I, Mannik M (1981) Mesangial matrix and inflammatory cells. Proc 8th Int Congr Nephrol, Athens. Karger, Basel, pp 879–887

    Google Scholar 

  110. Suzuki Y, Churg J, Grishman E, Mautner W, Dachs S (1963) The mesangium of the renal glomerulus: Electron microscopic studies of pathologic alterations. Am J Pathol 43:555–568

    Google Scholar 

  111. Takamiya H, Batsford S, Kluthe R, Vogt A (1979) Comparison of the handling of ferritin and ferritin-protein conjugates by the glomerular mesangium. Lab Invest 40:18–24

    Google Scholar 

  112. Thoenes W (1969) Neuere Aspekte der normalen und pathologischen Feinstruktur des Glomerulus. Hippokrates 40:609–617

    Google Scholar 

  113. Thoenes W (1979) aktuelle Pathologie der Glomerulonephritis. Klin Wochenschr 57:799–814

    Google Scholar 

  114. Tighe JR (1975) The mesangium in glomerular disease. Proc Roy Soc Med 68:151–158

    Google Scholar 

  115. Velosa JA, Glasser RJ, Nevins TE, Michael AF (1977) Experimental model of focal sclerosis. II. Correlation with immunopathologic changes, macromolecular kinetics and polyanion loss. Lab Invest 36:527–534

    Google Scholar 

  116. Vernier RL, Birch-Andersen A, Ravn H (1963) Studies of the human fetal kidney. II. Permeability characteristics of the developing glomerulus. J Ultrastruct Res 8:66–88

    Google Scholar 

  117. Vernier RL, Mauer SM, Fish AJ, Michael AF (1971) The mesangial cell in glomerulonephritis. Adv Nephrol 1:31–46

    Google Scholar 

  118. Ward DM, Blantz RC (1981) Uptake of macromolecules by the glomerular mesangium is increased by angiotensin II. (Abstr) Clin Research 29:479

    Google Scholar 

  119. Yamada E (1955) The fine structure of the renal glomerulus of the mouse. J Biophysic Biochem Cytol 1:551–566

    Google Scholar 

  120. Zimmermann KW (1929) Über den Bau des Glomerulus der menschlichen Niere. Z. Mikrosk-anat Forsch 18:520–552

    Google Scholar 

  121. Zimmermann KW (1933) Über den Bau des Glomerulus der Säugetiere. Weitere Mitteilungen. Z. Mikrosk-anat Forsch 32:176–277

    Google Scholar 

  122. Zollinger HU, Mihatsch MJ (1978) Renal Pathology in Biopsy Springer, Berlin Heidelberg New York, pp 21–32 and 188–355

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the Veterans Administration, Washington, DC

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sterzel, R.B., Lovett, D.H., Stein, H.D. et al. The mesangium and glomerulonephritis. Klin Wochenschr 60, 1077–1094 (1982). https://doi.org/10.1007/BF01715838

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01715838

Key words

Schlüsselwörter

Navigation