Skip to main content
Log in

Cellular mechanism of the furosemide sensitive transport system in the kidney

Zellulärer Mechanismus des Furosemid-empfindlichen Transport-Systems in der Niere

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Experiments were performed in the distal tubule of the doubly-perfused kidney of Amphiuma to determine active and passive forces, involved in the transport processes of potassium, sodium and chloride. Ion-sensitive microelectrodes and conventional microelectrodes were applied to estimate intracellular ion activities, cell membrane potentials and net flux of potassium and chloride under control conditions and during inhibition of active transport. Sodium chloride cotransport, located in the luminal cell membrane is postulated, based on the following observations:

Total omission of sodium from the tubular lumen inhibits furosemide sensitive chloride reabsorption, decreases the lumen positive transepithelial potential difference and leads to a dramatic decrease of intracellular chloride. The experiments further suggest that potassium ions are involved in the sodium chloride transport system because potassium reabsorption is inhibited by furosemide and because intracellular sodium falls significantly when potassium ions are removed from the tubular fluid. Furthermore, there is experimental evidence that the luminal potassium uptake mechanism is suppressed after potassium adaptation. Under these conditions potassium transport is found to be insensitive to furosemide.

The data suggest a furosemide sensitive contransport system for sodium, chloride and potassium, operative in the luminal cell membrane. The energy for this carrier-mediated transport process is provided by the large “downhill” gradient of sodium across the luminal cell membrane which is maintained by the sodium pump located in the peritubular cell membrane.

Zusammenfassung

Experimente am distalen Tubulus der doppelt perfundierten Niere des Amphiuma wurden ausgeführt, um die aktiven und passiven Kräfte zu bestimmen, die in die Transportprozesse von Kalium, Natrium und Chlorid involviert sind. Ionen-sensitive und konventionelle Mikroelektroden wurden verwendet, um intrazelluläre Ionenaktivitäten, Zellmembranpotentiale und Kalium- und Chlorid Nettoflüsse unter Kontrollbedingungen und während Hemmung des aktiven Transports abzuschätzen.

Auf der Basis folgender Beobachtungen wird ein Natrium-Chlorid Kotransport postuliert, der in der luminalen Zellmembran lokalisiert ist: Entfernung von Natrium aus dem Tubuluslumen hemmt die Furosemid empfindliche Chloridresorption, verringert die luminal positive transepitheliale Potentialdifferenz und führt zu dramatischem Abfall des intrazellulären Chlorids. Die Experimente schlagen ferner vor, daß Kaliumionen im Natrium-Chlorid Transportsystem involviert sind, weil die Kaliumresorption durch Furosemid gehemmt wird, und weil intrazelluläres Natrium signifikant abfällt, wenn die Kaliumionen aus der Tubulusflüssigkeit entfernt werden. Weiters gibt es experimentelle Hinweise, daß nach der Kalium Adaptation der luminale Kalium-Aufnahmemechanismus unterdrückt ist. Unter diesen Bedingungen ist der Kaliumtransport unempfindiich auf Furosemid.

Die Daten schlagen ein Furosemid empfindliches Kotransport-System für Natrium, Chlorid und Kalium in der luminalen Zellmembran vor. Die Energie für diesen Carriervermittelten Transportprozeß wird von einem großen „Bergab“-Gradienten von Natrium über die luminale Zellmembran bereitgestellt, der seinerseits durch die in der peritubulären Zellmembran lokalisierte Natriumpumpe aufrechterhalten wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berliner RW, Kennedy TJ Jr, Hilton JG (1950) Renal mechanisms for excretion of potassium. Amer J Physiol 162:348–367

    Google Scholar 

  2. Boulpaep EL, Giebisch G (1978) Electrophysiological measurements on the renal tubule. In: Manuel Martinez-Maldonado (Hrsg) Methods in pharmac. Plen Publ Corp Vol 4B, pp 165–193

    Google Scholar 

  3. Burg MD, Green N (1973) Function of the thick ascending limb of Henle's loop. Amer J Physiol 224:659–668

    Google Scholar 

  4. Burg MD, Stoner L, Cardinal J, Green N (1973) Furosemide effect on isolated perfused tubules. Amer J Physiol 225:119–124

    Google Scholar 

  5. Burg MD, Bourdeau JE (1978) Function of the thick ascending limb of Henle's loop. In: Vogel HG and Ullrich KJ (Hrsg) New aspects of renal function. Excerpta Medica, Amsterdam, Oxford IV, p 91

    Google Scholar 

  6. Eveloff J, Kinne R, Kinne-Saffran E, Murer H, Silva P, Epstein FH, Stoff J, Kinter WB (1978) Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pflügers Arch 378:87–92

    Google Scholar 

  7. Finkelstein FO, Hayslett JP (1975) Role of medullary Na-K-ATPase in renal potassium adaptation. Amer J Physiol 229:524–528

    Google Scholar 

  8. Fossat B, and Lahlou B (1979) The mechanism of coupled transport of sodium and chloride in isolated urinary bladder of the trout. J Physiol 294:211–222

    Google Scholar 

  9. Frizzell RA, Dugas MC, Schultz SG (1975) Sodium chloride transport by rabbit gallbladder. J Gen Physiol 65:769–795

    Google Scholar 

  10. Frizzell RA, Smith PL, Vosburgh E, Field M (1979) Coupled sodium-chloride influx across brush border of flounder intestine. J Membrane Biol 46:27–36

    Google Scholar 

  11. Frömter E (1972) The route of passive ion movement through the epithelium of Necturus gallbladder. J Membrane Biol 8:259–301

    Google Scholar 

  12. Fujimoto M, Kubota T (1976) Physiochemical properties of a liquid ion exchanger microelectrode and its applications to biological fluids. Jap J Physiol 26:631–650

    Google Scholar 

  13. Fujimoto M (1981) Intracellular ion activity measurements in renal tubular epithelium. In: Karger S (Hrsg) Proc 8th Int Congr Nephrol, Athens, pp 949–955

  14. Geck P, Pietrzyk C, Burckhardt BC, Pfeiffer P, Heinz E (1980) Electrically silent cotransport of Na+, K+ and Cl in Ehrlich cells. Biochim Biophys Acta 600:432–447

    Google Scholar 

  15. Gertz K (1962) Direct measurement of the transtubular flux of electrolytes and non-electrolytes in the intact rat kidney. Proc 22nd Int Congr Physiol Sciences, Leyden, p 370

  16. Giebisch G (1979) Renal potassium transport. In: Giebisch G, Tosteson D, Ussing HH (Hrsg) Transport across biological membranes. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Greger R (1981) Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle — a sodium dependent process. Pflügers Arch 390:38–43

    Google Scholar 

  18. Greger R, Schlatter E (1981) Presence of luminal K+, a prerequisite for active NaCl transport in the thick ascending limb of Henle's loop of rabbit kidney. Pflügers Arch 392:92–94

    Google Scholar 

  19. Hansen LL, Schilling AR, Wiederholt M (1981) Effect of calcium, furosemide and chlorothiazide on net volume reabsorption and basolateral membrane potential of the distal tubule. Pflügers Arch 389:121–126

    Google Scholar 

  20. Imai M (1977) Effect of bumetanide and furosemide on the thick ascending limb of Henle's loop of rabbits and rats perfused in vitro. Europ J Pharm 41:409–416

    Google Scholar 

  21. Khuri RN, Wiederholt M, Strieder N, Giebisch G (1975) Effects of flow rate and potassium intake on distal tubular potassium transfer. Amer J Physiol 228:1249–1261

    Google Scholar 

  22. Machen TE, McLennan WL (1980) Na+-dependent H+ and Cl transport in in vitro frog gastric mucosa. Amer J Physiol 238:G403-G413

    Google Scholar 

  23. McManus TJ, Schmidt WF III. (1978) Ion and co-ion transport in avian red cells. In: Hoffman JF (Hrsg) Membrane transport processes, Vol. 1. Raven Press, New York, pp 97–106

    Google Scholar 

  24. Nellans HN, Frizzell RA, Schultz SG (1973) Coupled sodium-chloride influx across the brush border of rabbit ileum. Amer J Physiol 225:467–475

    Google Scholar 

  25. Oberleithner H, Giebisch G (1981) Effects of furosemide and low chloride on potassium (K) transport across Amphiuma distal tubule — linkage of potassium (K) with chloride (Cl) reabsorption. 8th Int Congr of Nephrol Athens, 7–12 June, Astr TT-079

  26. Oberleithner H, Giebisch G (1981) Mechanism of potassium transport across distal tubular epithelium of Amphiuma. In: MacKnight ADC, Leader JP (Hrsg) Epithelial ion and water Transport. Raven Press, New York, pp 97–105

    Google Scholar 

  27. Oberleithner H, Guggino W, Giebisch G (1981) The cellular mechanism of potassium adaptation in the distal amphibian nephron. Proc Physiol Soc 76P

  28. Oberleithner H, Guggino W, Giebisch G (1982) Mechanism of distal tubular chloride transport in Amphiuma kidney. Amer J Physiol 242:F331-F339

    Google Scholar 

  29. Palfrey HC, Feit PW, Greengard P (1980) cAMP-stimulated cation cotransport in avian erythrocytes: inhibition by “loop” diuretics. Amer J Physiol 238:C139-C148

    Google Scholar 

  30. Pfaller W, Fischer WM, Strieder N, Wurnig H, Deetjen P (1974) Morphologic changes of cortical nephron cells in potassium-adapted rats. Laboratory Invest 31:678–684

    Google Scholar 

  31. Rocha AS, Kokko JP (1973) Sodium chloride and water transport in the medullary thick ascending limb of Henle: Evidence for active chloride transport. J Clin Invest 52:612–623

    Google Scholar 

  32. Schultz SG (1977) Sodium-coupled solute transport by small intestine: a status report. Amer J Physiol 233:E249-E254

    Google Scholar 

  33. Shindo T, Spring KR (1981) Chloride movement across the basolateral membrane of proximal tubule cells. J Membrane Biol 58:35–42

    Google Scholar 

  34. Silva P, Brown RS, Epstein FH (1977) Adaptation to potassium. Kidney Int 11:466–475

    Google Scholar 

  35. Stanton B, Biemesderfer D, Wade JB, Giebisch G (1981) Structural and functional study of the rat distal nephron: Effects of potassium adaptation and depletion. Kidney Int 19:36–48

    Google Scholar 

  36. Steiner RA, Oehme M, Ammann D, Simon W (1979) Neutral carrier sodium ion-selective microelectrode for intracellular studies. Analyt Chem 51:351–353

    Google Scholar 

  37. Stoner LC (1977) Isolated perfused amphibian renal tubules: the diluting segment. Amer J Physiol 233:F438-F444

    Google Scholar 

  38. Sullivan WJ (1968) Electrical potential differences across distal renal tubules of Amphiuma. Amer J Physiol 214:1096–1103

    Google Scholar 

  39. Thomas RC (1974) Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode. J Physiol 238:159–180

    Google Scholar 

  40. Velázquez H, Wright FS, Good DW (in press) Luminal influences on potassium secretion: Chloride replacement with sulfate. (Accepted for publication by Amer J Physiol)

  41. Walker JL (1971) Ionic specific liquid ion exchanger microelectrodes. Anal Chem 43:89A-93A

    Google Scholar 

  42. Wiederholt M, Sullivan WJ, Giebisch G (1971) Potassium and sodium transport across single distal tubules of Amphiuma. J Gen Physiol 57:495–525

    Google Scholar 

  43. Windhager EE, Giebisch G (1965) Electrophysiology of the nephron. Physiol Rev 45:214

    Google Scholar 

  44. Wright FS (1977) Sites and mechanisms of potassium transport along the renal tubule. Kidney Int 11:415–432

    Google Scholar 

  45. Wright FS, Strieder N, Fowler NB, Giebisch G (1971) Potassium secretion by distal tubule after potassium adaptation. Amer J Physiol 221:437–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NIH grant PHS AM 17433, by the Fogarty foundation (5 FO5 TWO 3865-02) and by Österreichischer Forschungsrat, Proj. No.: 4366

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberleithner, H., Giebisch, G., Lang, F. et al. Cellular mechanism of the furosemide sensitive transport system in the kidney. Klin Wochenschr 60, 1173–1179 (1982). https://doi.org/10.1007/BF01716719

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01716719

Key words

Schlüsselwörter

Navigation