Skip to main content
Log in

Rate of concentration and digestion of radioactive growth hormone preparations injected in rats, as measured by the amount and nature of radioactivity in the tissues

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The distribution of radioactivity in the tissues of the rat has been established after the administration of radioactive bovine growth hormone preparations.

Bovine growth hormone was used either transformed in to a14C-guanidinated derivative, which was fully active, of labeled with less than 1 mole per mole of125I.

The tissue radioactivity distribution curves obtained belong to two different categories: in kidney, liver and spleen there is an early concentration which attains a maximum in 15 minutes after the injection of the hormone, and rapidly declines. In heart, skeletal muscle, pancreas, intestine, bone and fat, the radioactivity increases gradually and a steady-state is reached after 30 to 60 minutes.

Kidney is the organ where the highest concentration of radioactivity occurs. However, muscle accumulates more than 60% of the initial doses after 2 hours. Very little radioactivity appears in the urine, in this period.

Similar results have been obtained with pharmacological or physiological doses of the labeled hormones.

Blood plasma does not degrade the injected hormone but kidney, liver and muscle rapidly produce radioactive fragments soluble in 10% trichloro-acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butt, W. R., 1975. Hormone Chemistry (Wiley, J. & Sons Limited, ed.) 2nd. edition. Vol. 1, pp. 96–115. Ellis Horwood. Chichester. England.

    Google Scholar 

  2. Van Wyk, J. J. and Underwood, L. E., 1975. Annu. Rev. Med. 26, 427–441.

    Google Scholar 

  3. Frykland, L., Uthne, K. and Sievertsson, A., 1974. Biochem. Biophys. Res. Commun. 61, 950–956.

    Google Scholar 

  4. Van Wyk, J. J., Underwood. L. E., Hintz, R. L., Clemmons, D. R., Voina, S. J. and Weaver, R. P., 1974. Recent Prog. Horm. Res. 30, 259–318.

    Google Scholar 

  5. Vodian, M. A. and Nicoll, C. S., 1976. Fed. Proc. 35 n°. 3 Abst. n° 3178.

  6. Ellis, S., Nuenke, J. M. and Grindeland, R. E., 1968. Endocrinology 83, 1029–1042.

    Google Scholar 

  7. Yadley, R. A., and Chrambach, A., 1973. Endocrinology 93, 858–865.

    Google Scholar 

  8. Jagannadha Rao, A., Ramachandran, J. and Li, C. H., 1976. Proc. Soc. Exp. Biol. Med. 151, 285–287.

    Google Scholar 

  9. Reagan, C. R., Mills, J. B., Kostyo, J. L. and Wilhelmi, A. E., 1975. Proc. Natl. Acad. Sci. U.S.A. 72, 1684–1686.

    Google Scholar 

  10. Thomas, J. W., Lewis, U. J. and Vander Laan, W. P., 1976. Fed. Proc. 35 n°. 3, Abst. n°. 3179.

  11. Sonenberg, M., Yamasaki, N., Kikutani, M., Swislocki, N. I., Levine, L. and New, M., 1972. Growth and Growth Hormone (Pecile. A. and Muller, E. E. ed.) pp. 75, Excerpta Medica, Amsterdam.

    Google Scholar 

  12. Nutting, D. F., Kostyo, J. L., Mills, J. B. and Wilhelmi, A. E., 1972. Endocrinology 90, 1202–1213.

    Google Scholar 

  13. Gráf, L. and Li, C. H., 1974. Biochemistry 13, 5408–5415.

    Google Scholar 

  14. Holladay, L. A., Levine, J. H., Nicholson, W. E., Orth, D. N., Salmon, W. D. Jr. and Puett, D., 1975. Biochim Biophys Acta 381, 47–60.

    Google Scholar 

  15. Li, C. H. and Bewley, T. A., 1976. Proc. Natl. Acad. Sci. U.S.A. 73, 1476–1479.

    Google Scholar 

  16. Chillemi, F., Aiello, A. and Pecile, A., 1972. Nature-New Biology 238, 243–245.

    Google Scholar 

  17. Sonenberg, M., Money, W. L., Dorans, J. F., Lucas, V. and Bourque, L., 1954. Endocrinology 55, 709–720.

    Google Scholar 

  18. Salmon, S., Utiger, R., Parker, M. and Reichlin, S., 1962. Endocrinology 70, 459–464.

    Google Scholar 

  19. Mess, B. and Hámori, J., 1965. Acta Histochem. 20, 143–148.

    Google Scholar 

  20. Collipp, P. J., Patrick, J. R., Goodheart, C. and Kaplan, S. A., 1966. Proc. Soc. Exp. Biol. Med. 121, 173–177.

    Google Scholar 

  21. De Kretser, D. M., Catt, K. J., Burger, H. G. and Smith, G. C., 1969. J. Endocr. 43, 105–111.

    Google Scholar 

  22. Mayberry, H. E., Van den Brande, J. L., Van Wik, J. J. and Waddell, W. J., 1971. Endocrinology 88, 1309–1317.

    Google Scholar 

  23. Groves, W. E., Houts, G. E. and Bayse, G. S., 1972. Biochim. Biophys. Acta 264, 472–480.

    Google Scholar 

  24. Wallace, A. L. C., Stacy, B. D. and Thorburn, G. D., 1972. Pfluegers Arch. 331, 25–37.

    Google Scholar 

  25. Evans, R. L. and Saroff, H. A., 1957. J. Biol. Chem. 228, 295–304.

    Google Scholar 

  26. Dellacha, J. M. and Sonenberg, M., 1964. J. Biol. Chem. 239, 1515–1520.

    Google Scholar 

  27. Roth, J., 1975. Methods in Enzymology (O'Malley, B. W. and Hardman, J. G., ed.) Vol. 37, pp. 223–228. Academic Press N.Y.

    Google Scholar 

  28. Dellacha, J. M., Enero, M. A. and Paladini, A. C. 1968. Biochim. Biophys. Acta, 168, 95–150.

    Google Scholar 

  29. Greenspan, F. S., Li, C. H., Simpson, M. E. and Evans, H. M. 1949. Endocrinology 45, 455–463.

    Google Scholar 

  30. Wilhelmi, A. E., 1973. Peptide Hormones (Berson, S. A. and Yallow, R. S., ed.) pp. 296–302, North Holland Publishing Co. Amsterdam.

    Google Scholar 

  31. Manery, J. F., 1954. Physiol. Rev. 34, 334–417.

    Google Scholar 

  32. Barratt, T. M. and Walser, M., 1969. J. Clin. Invest. 48, 56–66.

    Google Scholar 

  33. Barratt, T. M. and Walser, M., 1968. Clin. Sci. 35, 525–536.

    Google Scholar 

  34. Kaltreider, N. K., Meneely, G. R., Allen, J. R. and Bale, W. F., 1941. J. Exp. Med. 74, 569–572.

    Google Scholar 

  35. Frank, J. S. and Langer, G. A., 1974. J. Cell Biol. 60, 586–601.

    Google Scholar 

  36. Skelton, J., 1927. Arch. Int. Med. Exp. 40, 140–152.

    Google Scholar 

  37. Cartland, G. F. and Koch, C., 1928. Amer. J. Physiol. 85, 540–545.

    Google Scholar 

  38. Caster, W. O., Poncelet, J., Simon, A. B. and Armstrong, W. D., 1956. Proc. Soc. Exp. Biol. Med. 91, 122–126.

    Google Scholar 

  39. Biochemists' Handbook, 1961. (Long, C., ed.) pp. 715 E. and F. N. Spon London.

  40. Widdowson, E. M., 1950. Nature (London) 166, 626–628.

    Google Scholar 

  41. Santomé, J. A., Dellacha, J. M., Paladini, A. C., Peña, C., Biscoglio, M. J., Daurat, S. T., Poskus, E. and Wolfenstein, C. E. M., 1973. Eur. J. Biochem 37, 164–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to ProfessorLuis F. Leloir on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Retegui-Sardou, L.A., Scaramal, L.O., Dellacha, J.M. et al. Rate of concentration and digestion of radioactive growth hormone preparations injected in rats, as measured by the amount and nature of radioactivity in the tissues. Mol Cell Biochem 16, 87–96 (1977). https://doi.org/10.1007/BF01732048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732048

Keywords

Navigation