Skip to main content
Log in

An evaluation of the phylogenetic position of the dinoflagellateCrypthecodinium cohnii based on 5S rRNA characterization

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Partial nucleotide sequences for the 5S and 5.8S rRNAs from the dinoflagellateCrypthecodinium cohnii have been determined, using a rapid chemical sequencing method, for the purpose of studying dinoflagellate phylogeny. The 5S RNA sequence shows the most homology (75%) with the 5S sequences of higher animals and the least homology (< 60%) with prokaryotic sequences. In addition, it lacks certain residues which are highly conserved in prokaryotic molecules but are generally missing in eukaryotes. These findings suggest a distant relationship between dinoflagellates and the prokaryotes. Using two different sequence alignments and several different methods for selecting an optimum phylogenetic tree for a collection of 5S sequences including higher plants and animals, fungi, and bacteria in addition to theC. cohnii sequence, the dinoflagellate lineage was joined to the tree at the point of the plant-animal divergence, well above the branching point of the fungi. This result is of interest because it implies that the well-documented absence in dinoflagellates of histones and the typical nucleosomal subunit structure of eukaryotic chromatin is the result of secondary loss. and not anindication of an extremely primitive state, as was previously suggested. Computer simulations of 5S RNA evolution have been carried out in order to demonstrate that the above-mentioned phylogenetic placement is not likely to be the result of random sequence convergence.

We have also constructed a phylogeny for 5.8S RNA sequences in which plants, animals, fungi and the dinoflagellates are again represented. While the order of branching on this tree is the same as in the 5S tree for the organisms represented, because it lacks prokaryotes, the 5.8S tree cannot be considered a strong independent confirmation of the 5S result. Moreover, 5.8S RNA appears to have experienced very different rates of evolution in different lineages indicating that it may not be the best indicator of evolutionary relationships.

We have also considered the existing biological data regarding dinoflagellate evolution in relation to our molecular phylogenetic evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azad AA (1979) Nucleic Acids Res 7:1913–1929

    Google Scholar 

  • Cachon J, Cachon M, Salvano P (1979) Arch Protistenk 122:43–54

    Google Scholar 

  • Cachon J, Cachon M (1977) Chromosoma 60:237–251

    Google Scholar 

  • Cavalier-Smith T (1975) Nature 256:463–468

    Google Scholar 

  • Cavalier-Smith T (1978) J Cell Sci 34:247–278

    Google Scholar 

  • Crick FHC (1966) J Mol Biol 19:548–555

    Google Scholar 

  • Dayhoff MO (1978) Atlas of Protein Sequence and Structure, vol 5, suppl 3, Nation Biomed Res Foundation, Washington, DC

    Google Scholar 

  • Demoulin V (1975) Bot Rev 40:315–345

    Google Scholar 

  • Dobzhansky T, Ayala FJ, Stebbins GL, Valentine JW (1977) Evolution ch 12, WH Freeman & Co, San Francisco

    Google Scholar 

  • Dodge JD (1965) Excerpta Med Int Congr Ser 19:339

    Google Scholar 

  • Dodge JD (1973) The Fine Structure of Algal Cells, ch 3, Academic Press, New York

    Google Scholar 

  • Duffus JH, Penman CS, Webb NWG (1973) Experientia 29:632–633

    Google Scholar 

  • Erdmann VA (1976) Prog Nucleic Acids Res Mol Biol 18:45–90

    Google Scholar 

  • Erdmann VA (1980) Nucleic Acids Res 8:r31-r47

    Google Scholar 

  • Fitch WM (1976) J Mol Evol 8:13–40

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Science 155:279–284

    Google Scholar 

  • Fox GE, Woese CR (1975) Nature 256:505–507

    Google Scholar 

  • Giesbrecht P (1962) Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abl 1: Orig 196:516–519

    Google Scholar 

  • Hamkalo BA, Rattner JB (1977) Chromosoma 60:39–47

    Google Scholar 

  • Heath BI (1978) Nuclear Division in the Fungi. Academic Press, New York, p 89

    Google Scholar 

  • Herr W, Noller HE (1975) FEBS Lett 53:248–252

    Google Scholar 

  • Hinnebusch AG, Klotz LC, Immergut E, Loeblich AR III (1980) Biochemistry 19:1744–1754

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hollande A (1974) Protistologica 10:413–451

    Google Scholar 

  • Holmquist R (1972) J Mol Evol 1:115–133

    Google Scholar 

  • Horgen PA, Silver JC (1978) Ann Rev Microbiol 32:249–284

    Google Scholar 

  • Hori H, Osawa S (1979) Proc Natl Acad Sci USA 76:381–385

    Google Scholar 

  • Klotz LC, Komar N, Blanken RL, Mitchell RM (1979) Proc Natl Acad Sci USA 76:4516–4520

    Google Scholar 

  • Kubai DF (1973) J Cell Sci 13:511–552

    Google Scholar 

  • Kubai D, Ris H (1969) J Cell Biol 40:508–528

    Google Scholar 

  • Larue B, Cedergren RJ, Sankoff D, Grosjean H (1979) J Mol Evol 14:287–300

    Google Scholar 

  • Leedale GF (1968) In: Buetow DE (ed) The Nucleus in Euglena, ch 5, Academic Press, New York

    Google Scholar 

  • Loeblich AR Jr (1974) Taxon 23:277–290

    Google Scholar 

  • Loeblich AR III (1976) J Protozool 23:13–28

    Google Scholar 

  • McDonald K (1972) J Phycol 8:156–166

    Google Scholar 

  • Marco Y, Rochaix JD (1980) Mol Gen Genet 177:715–723

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Methods Enzymol 65:521–522

    Google Scholar 

  • Maxwell IH, Maxwell F, Hahn WE (1977) Nucleic Acids Res 4:241–246

    Google Scholar 

  • Nazar RN, Sitz TO, Busch T (1975) J Biol Chem 250:8591–8597

    Google Scholar 

  • Nishikawa K, Takemura S (1974) J Biochem 76:935–947

    Google Scholar 

  • Noller HF, Garrett RA (1979) J Mol Biol 132:621–636

    Google Scholar 

  • Oakley BR, Dodge JD (1974) J Cell Biol 63:322–325

    Google Scholar 

  • Pavlakis GN, Jordan BR, Wurst RM, Vournakis JN (1979) Nucleic Acids Res 8:2213–2238

    Google Scholar 

  • Peattie D (1979) Proc Natl Acad Sci USA 76:1760–1764

    Google Scholar 

  • Philippsen P, Thomas M, Kramer RA, Davis RW (1978) J Mol Biol 123:387–404

    Google Scholar 

  • Ragan MA, Chapman DJ (1978) A Biochemical Phylogeny of the Protists, Academic Press, New York

    Google Scholar 

  • Ris H, Kubai DF (1974) J Cell Biol 60:702–720

    Google Scholar 

  • Rizzo PJ, Burghardt RC (1980) Chromosoma 76:91–99

    Google Scholar 

  • Rizzo PJ, Nooden LD (1974) Biochim Biophys Acta 349:402–444

    Google Scholar 

  • Nishikawa K, Takemura S (1974) J Biochem 76:935–947

    Google Scholar 

  • Rubin GM (1975) In: Prescott DM (ed) Methods in Cell Biology vol 12. Academic Press, New York, p 45

    Google Scholar 

  • Sagan L (1967) J Theor Biol 14:225–274

    Google Scholar 

  • Sankoff D, Cedergren RJ, Lapalme G (1976) J Mol Evol 7:133–149

    Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) In: Dayhoff MO (ed) Atlas of Protein Sequence and Structure, vol 5, suppl 3, Nation Biomed Res Foundation, Washington DC

    Google Scholar 

  • Soyer MO (1971) Chromosoma 33:70–114

    Google Scholar 

  • Soyer MO (1972) Chromosoma 39:419–441

    Google Scholar 

  • Tanaka Y, Dyer TA, Brownlee GG (1980) Nucleic Acids Res 8:1259–1272

    Google Scholar 

  • Tartof KD (1975) Ann Rev Genet 9:355–385

    Google Scholar 

  • Taylor FJR (1976) J Protozool 23:28–40

    Google Scholar 

  • Tonnesen T, Engberg J, Leick V (1976) Eur J Biochem 63:399–407

    Google Scholar 

  • Tuttle RD, Loeblich AR III (1975) Phycologia 14:1–8

    Google Scholar 

  • Vigne R, Jordan BR (1977) J Mol Evol 10:77–86

    Google Scholar 

  • Werner-Schlenzka H, Werner E, Kroger H (1978) Comp Biochem Physiol 61B:587–591

    Google Scholar 

  • Wigler M, Sweet R, Sim GK, Wold B, Pellicer A, Lacy E, Maniatis T, Silverstein S, Axel R (1979) Cell 16:777–785

    Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Ann Rev Biochem 46:573–639

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinnebusch, A.G., Klotz, L.C., Blanken, R.L. et al. An evaluation of the phylogenetic position of the dinoflagellateCrypthecodinium cohnii based on 5S rRNA characterization. J Mol Evol 17, 334–347 (1981). https://doi.org/10.1007/BF01734355

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01734355

Key words

Navigation