Skip to main content
Log in

The rational mechanics and thermodynamics of polymeric fluids based upon the concept of a variable relaxed state

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The conceptual framework of polymer continuum mechanics based upon Eckart's idea of a variable relaxed state is developed. No constitutive models are explicitly used. The theory admits four constitutive functions only, the scalar specific internal energy, the vectorial heat flux, and two tensorial fluxes representing non-elastic stress and flow (slippage). The non-linearity of the constitutive relations includes self-induced anisotropy (Leonov) with Reiner-Rivlin's equation representing a special example for this. — The effectiveness of this non-linear theory is demonstrated by treating elongational flows of polymer melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eckart C (1948) Phys Rev (2) 73:373–382

    Google Scholar 

  2. Dashner PA, VanArsdale WE (1981) J Non-Newtonian Fluid Mech 8:59–67

    Google Scholar 

  3. Dashner PA, VanArsdale WE (1983) J Non-Newtonian Fluid Mech 12:375–382

    Google Scholar 

  4. VanArsdale WE (1982) J Rheology 26:477–492

    Google Scholar 

  5. Kwon TH, Shen SF (1940) Rheol Acta 23:217–230

    Google Scholar 

  6. Truesdell C, Noll W (1965) In: Flügge S (ed) The nonlinear field theories of mechanics. Hdb. Physik, vol III/3. Springer, Berlin

    Google Scholar 

  7. Truesdell C (1977) A first course in rational continuum mechanics. Vol 1. General concepts. Academic Press, New York

    Google Scholar 

  8. Truesdell C (1969) Rational thermodynamics. McGraw-Hill, New York

    Google Scholar 

  9. Müller I (1973) Thermodynamik. Die Grundlagen der Materialtheorie. Bertelsmann, Düsseldorf

    Google Scholar 

  10. Lavenda BH (1978) Thermodynamics of irreversible processes. MacMillan, London

    Google Scholar 

  11. Truesdell C (1966) Six Lectures on Modern Natural Philosophy. Springer, Berlin

    Google Scholar 

  12. Eisenhart LP (1926) Riemannian Geometry. Princeton Univ. Press, Princeton

    Google Scholar 

  13. Riemann B (1966/67) Über die Hypothesen, welche der Geometrie zu Grunde liegen (1854). Abh Königl Ges Wiss Göttingen 13:133–150. — (Riemann's “Habilitationsvortrag” should not be confused with his “Habilitationsschrift” published in the same volume.)

  14. Kondo K (1955) In: Kondo K (ed) Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. Memoirs of the unifying study of the basic problems in engineering sciences by means of geometry, Vol. 1. Gakujutsu Bunken Fukyu-kai, Tokyo

    Google Scholar 

  15. Bilby BA, Bullough R, Smith E (1955) Proc Roy Soc London (A) 231:263–273

    Google Scholar 

  16. Kröner E, Seeger A (1959) Arch Rat Mech Anal 3:97–119

    Google Scholar 

  17. Kröner E (1960) Arch Rat Mech Anal 4:273–334

    Google Scholar 

  18. Truesdell C (1966) In: Truesdell C (ed) The mechanical foundations of elasticity and fluid dynamics. Continuum mechanics. I. The mechanical foundations of elasticity and fluid dynamics. Gordon and Breach, New York

    Google Scholar 

  19. Truesdell C, Toupin RA (1960) In: Flügge S (ed) The classical field theories. Hdb d Physik, vol III/1. Springer, Berlin

    Google Scholar 

  20. Besseling JF (1968) In: Parkus H, Sedov LI (eds) A thermodynamic approach to rheology. Irreversible aspects of continuum mechanics and transfer of physical characteristics in moving fluids. IUTAM Symposia Vienna, June 22–28, 1966. Springer, Wien

    Google Scholar 

  21. Stickforth J (1981) Int J Engng Sci 19:1775–1788

    Google Scholar 

  22. Leonov AI (1982) Rheol Acta 21:683–691

    Google Scholar 

  23. Lee EH, Liu DT, In: Parkus H, Sedov LI (eds) Finite strain elastic-plastic theory. Cf. [20]

  24. Leonov AI (1976) Rheol Acta 15:85–98

    Google Scholar 

  25. Cartan É (1946) Leçons sur la géométrie des espaces de Riemann. 2me éd. Gauthier-Villars, Paris

    Google Scholar 

  26. Guggenheimer HW (1963) Differential geometry. McGraw-Hill, New York

    Google Scholar 

  27. Bishop RL, Goldberg SI (1980) Tensor analysis on manifolds. Dover Publications, New York

    Google Scholar 

  28. Mandel J (1974) In: Sawzuk A (ed) Director vectors and constitutive equations for plastic and visco-plastic media. Problems of Plasticity. Proc. Int. Symp. on Foundations of Plasticity, Warsaw, August 30 – September 2, 1972. Noordhoff, Leyden

    Google Scholar 

  29. Huet C (1982) Rheol Acta 21:360–365

    Google Scholar 

  30. Truesdell C (1980) In: Astarita G, Marruci G, Nicolais L (eds) Sketch for a history of constitutive relations. Rheology (VIII. Intern. Congr. Rheology, Naples, Sept. 1–5, 1980), Vol. 1, p. 1–27. Plenum Press, New York

    Google Scholar 

  31. Eckart C (1940) Phys Rev (2) 58:267–269

    Google Scholar 

  32. Stickforth J, The problem of material stability in rubber elasticity, in preparation

  33. Giesekus HW (1985) A comparison of molecular and network-constitutive theories for polymer fluids. In: Logde AS, Renardy M, Nohel JA: Viscoelasticity and Rheology, pp. 157–180, Academic Press, New York

    Google Scholar 

  34. Giesekus H (1982) Rheol Acta 21:366–375

    Google Scholar 

  35. Curie P (1894) J Physique Radium (3) 3:393–415

    Google Scholar 

  36. Groot SR de, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  37. Meixner J, Reik HG (1959) In: Flügge S (ed) Thermodynamik der irreversiblen Prozesse. Hdb. d. Physik, vol III/2. Springer, Berlin

    Google Scholar 

  38. Bird RB, Armstrong RC, Hassager O (1977) Dynamics of polymeric fluids. Vol. 1. Fluid mechanics. Wiley, New York

    Google Scholar 

  39. Wobbe H (1984) Das rheologische Verhalten von Dehnströmungen polymerer Fluide. Diss. TU Braunschweig

  40. Meissner J, Stephenson SE, Demarmels A, Portmann P (1982) J Non-Newtonian Fluid Mech 11:221–237

    Google Scholar 

  41. Spencer AJM (1971) In: Eringen AC (ed) Theory of invariants. Continuum physics. Vol. I. Mathematics. Academic Press, New York

    Google Scholar 

  42. Rivlin RS (1955) J Rational Mech Anal 4:681–702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stickforth, J. The rational mechanics and thermodynamics of polymeric fluids based upon the concept of a variable relaxed state. Rheol Acta 25, 447–458 (1986). https://doi.org/10.1007/BF01774395

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01774395

Key words

Navigation