Skip to main content
Log in

Prediction of the creep behaviour of polyethylene and molybdenum from stress relaxation experiments

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In many applications it is useful to be able to convert observed creep data of a material to corresponding stress relaxation data or vice versa. If the material exhibits non-linear viscoelasticity such a conversion can be rather difficult. In this paper two semi-empirical flow equations, the power law and the exponential law, are used to convert stress relaxation data into corresponding creep behaviour data. These two flow equations are often used to describe non-linear viscoelastic behaviour. The procedure adopted here is based on the assumption that the creep data during the experiment decrease due to an increase in the internal stress level, thus decreasing the effective stress for flow. The conversion method is applied to high density polyethylene and polycrystalline molybdenum at room temperature. In general predictions using the power law are in better agreement with the experimental results than predictions using the exponential formula. The concepts of secondary and ceasing creep are discussed in terms of build-up of internal stress during the creep process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferry JD (1980) Viscoelastic Properties of Polymers, 3rd ed. John Wiley & Sons Inc, New York

    Google Scholar 

  2. Ward IM (1983) Mechanical Properties of Solid Polymers, 2nd ed. Wiley-Interscience, London

    Google Scholar 

  3. Findley WN, Lai JS, Onoran K (1976) Creep and Relaxation of Nonlinear Viscoelastic Materials. North-Holland Publ Co, New York, p 240

    Google Scholar 

  4. Krausz AS, Eyring H (1975) Deformation Kinetics. Wiley-Interscience, New York

    Google Scholar 

  5. Garofalo F (1965) Fundamentals of Creep and Creep Rupture. MacMillan, New York

    Google Scholar 

  6. Gittus J (1975) Creep, Viscoelasticity and Creep Fracture in Solids. Appl Sci Publ Ltd, London

    Google Scholar 

  7. Becker GW (1959) Kolloid-Z 166:4

    Google Scholar 

  8. Brüller OS, Pütz O, Klein V (1976) Rheol Acta 15:533

    Google Scholar 

  9. Wu LM, Meinecke EA, Tai BC (1978) Rubber Chem Techn 51:117

    Google Scholar 

  10. Tanaka C (1976) Trans Nat Res Inst Metals 18:14

    Google Scholar 

  11. Tanaka C, Ohba T, Kori M (1978) Trans ISIJ 18:412

    Google Scholar 

  12. Hammamy AK, Dubofsky W, Stüwe HP (1977) Z. Metallkde 68:417

    Google Scholar 

  13. Feltham P (1961) Phil Mag 6:259

    Google Scholar 

  14. Pollock JTA, Barton SG, Clissold RC (1981) Mater Sci Eng 49:155

    Google Scholar 

  15. Wilding MA, Ward IM (1984) J Mater Sci 19:629

    Google Scholar 

  16. Högfors C (1984) Rheol Acta 23:322

    Google Scholar 

  17. Li JCM (1967) Can J Phys 45:493

    Google Scholar 

  18. Kubát J, Rigdahl M, Seldén R (1976) J Appl Polym Sci 20:2799

    Google Scholar 

  19. Derby B, Ashby MF (1984) Scripta Metallurgica 18:1079

    Google Scholar 

  20. Hagström B (to be published)

  21. Kubát J (1965) Nature 204:378

    Google Scholar 

  22. Kubát J, Seldén R, Rigdahl M (1978) Mater Sci Eng 34:67

    Google Scholar 

  23. Kubát J (1963) Ark Fys (Sweden) 25:285

    Google Scholar 

  24. Kubát J, Seldén R, Rigdahl M (1978) J Appl Polym Sci 22:1715

    Google Scholar 

  25. Gupta I, Li JCM (1970) Metallurgical Trans 1:2323

    Google Scholar 

  26. Kubát J, Rigdahl M, Seldén R (1978) Phys Stat Sol (a) 50:117

    Google Scholar 

  27. Högfors C, Kubát J, Rigdahl M (1981) Phys Stat Sol (b) 107:147

    Google Scholar 

  28. Kubát J (1982) Phys Stat Sol (b) 111:599

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ek, C.G., Hagström, B., Kubát, J. et al. Prediction of the creep behaviour of polyethylene and molybdenum from stress relaxation experiments. Rheol Acta 25, 534–541 (1986). https://doi.org/10.1007/BF01774405

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01774405

Keywords

Navigation