Skip to main content
Log in

Conformational changes in cytochromeaa 3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction

  • General and Review Articles
  • b. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

  1. 1.

    The thermodynamics and molecular basis of energy-linked conformational changes in the cytochromeaa 3 and ATP synthetase complexes of the mitochondrial membrane have been studied with spectrophotometrical and fluorometrical techniques.

  2. 2.

    Ferric cytochromeaa 3 exists in two conformations, high spin and low spin, the equilibrium between these states being controlled by the electrical potential difference across the mitochondrial membrane. The conformational change is brought about by an electrical fielddriven binding of one proton peraa 3 to the complex. At pH 7.2 the concentration of the two conformations is equal at a membrane potential of 170 mV corresponding to about 4 kcal/mole.

  3. 3.

    The high to low spin transition in ferricaa 3 is also induced by hydrolysis of ATP in which case two molecules ofaa 3 are shifted per ATP molecule hydrolyzed. This is in accordance with translocation of two protons across the mitochondrial membrane coupled to hydrolysis of ATP as proposed in the chemiosmotic theory of oxidative phosphorylation.

  4. 4.

    The conformational transition in cytochromeaa 3 is not an expression of the formation of a ‘high-energy’ intermediate or reversal of the energy-transducing pathway of oxidative phosphorylation, but is presumably the basis of allosteric control of the activity of cytochrome oxidase by the energy state of the mitochondrion. This control is exerted by a regulatory mechanism in which the electrical potential difference controls the conformation and redox properties of the heme centres and thereby the rate of oxygen consumption.

  5. 5.

    The synthesis of one molecule of ATP by oxidative phosphorylation is energetically equivalent to the work done in carrying two electrical charges across the entire mitochondrial membrane.

  6. 6.

    Fluorescence changes of aurovertin bound to ATP synthetase reveal that the electrical membrane potential induces a conformational change in the F1 portion of the enzyme which is probably associated with dissociation of the natural F1 inhibitor protein. This conformational change is energetically equivalent to the work done in carrying one electrical charge across the mitochondrial membrane.

  7. 7.

    A model is proposed for the mechanism of the electrical field-induced conformational changes in the cytochromeaa 3 and ATP synthetase complexes, and the significance of these changes in the mechanism and control of mitochondrial energy conservation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. F. Wikström, Biochim. Biophys. Acta 301, 155–193 (1973).

    PubMed  Google Scholar 

  2. M. K. F. Wikström and N.-E. L. Saris, in: Electron Transport and Energy Conservation, (J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater, Eds.), Adriatica Editrice, Italy, pp. 77–88 (1970).

    Google Scholar 

  3. H. A. Lardy, D. Johnson and W. C. McMurray, Arch. Biochem. Biophys. 78, 587–597 (1958).

    PubMed  Google Scholar 

  4. M. K. F. Wikström, Biochim. Biophys. Acta 283, 385–390 (1972).

    PubMed  Google Scholar 

  5. M. K. F. Wikström, Soc. Sci. Fenn. Comment. Biol. 43, 1–42 (1971).

    Google Scholar 

  6. M. K. F. Wikström, Ann. N.Y. Acad. Sci. 227, 146–158 (1974).

    PubMed  Google Scholar 

  7. D. F. Wilson, M. Erecinska and P. Nicholls, FEBS Lett. 20, 61–65 (1972).

    PubMed  Google Scholar 

  8. M. Erecinska, D. F. Wilson, N. Sato and P. Nicholls, Arch. Biochem. Biophys. 151, 188–193 (1972).

    PubMed  Google Scholar 

  9. D. F. Wilson and K. Fairs, Arch. Biochem. Biophys. 163, 491–497 (1974).

    PubMed  Google Scholar 

  10. D. F. Wilson and E. S. Brocklehurst, Arch. Biochem. Biophys. 158, 200–212 (1973).

    PubMed  Google Scholar 

  11. E. C. Slater, E. Quagliariello, S. Papa and J. M. Tager, in: Electron Transport and Energy Conservation, (J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater, Eds.), Adriatica Editrice, Bari, Italy, pp. 1–4 (1970).

    Google Scholar 

  12. E. C. Slater, Nature 172, 975–978 (1953).

    PubMed  Google Scholar 

  13. B. Chance and G. R. Williams, Advan. Enzymol. 17, 65–134 (1956).

    Google Scholar 

  14. P. D. Boyer, in: Oxidases and Related Redox Systems, (T. E. King, H. S. Mason and M. Morrison, Eds.), Wiley, New York, pp. 994–1008.

  15. D. F. Wilson, P. L. Dutton and M. Wagner, Curr. Topics Bioenergetics 5, 233–265 (1973).

    Google Scholar 

  16. P. Mitchell, Nature 191, 144–148 (1961).

    PubMed  Google Scholar 

  17. P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research Ltd., Bodmin, U.K. (1966).

    Google Scholar 

  18. P. Mitchell, Chemiosmotic Coupling and Energy Transduction, Glynn Research Ltd., Bodmin, U.K. (1968).

    Google Scholar 

  19. T.-M. Chang and H. S. Penefsky, J. Biol. Chem. 248, 2746–2754 (1973).

    PubMed  Google Scholar 

  20. R. M. Bertina, P. I. Schrier and E. C. Slater, Biochim. Biophys. Acta 305, 503–518 (1973).

    PubMed  Google Scholar 

  21. R. J. van de Stadt, K. van Dam and E. C. Slater, Biochim. Biophys. Acta 347, 224–239 (1974).

    PubMed  Google Scholar 

  22. R. J. van de Stadt and K. van Dam, Biochim. Biophys. Acta 347, 253–263 (1974).

    PubMed  Google Scholar 

  23. H. A. Lardy, J. L. Connelly and D. Johnson, Biochemistry 3, 1961–1968 (1964).

    Google Scholar 

  24. H. A. Lardy and C. H. C. Lin, in: Inhibitors — Tools in Cell Research, (Th. Bücher and H. Sies, Eds.), Springer-Verlag, Berlin, pp. 279–281 (1969).

    Google Scholar 

  25. B. Chance and G. R. Williams, J. Biol. Chem. 217, 409–427 (1955).

    PubMed  Google Scholar 

  26. P. D. Boyer, R. L. Cross and W. Momsen, Proc. Natl. Acad. Sci. U.S. 70, 2837–2839 (1973).

    Google Scholar 

  27. E. C. Slater, in: Dynamics of Energy-Transducing Membranes, (L. Ernster, R. W. Estabrook and E. C. Slater, Eds.), Elsevier Scient. Publ. Co., Amsterdam, pp. 1–20 (1974).

    Google Scholar 

  28. W. C. Schneider, J. Biol. Chem. 176, 259–266 (1948).

    Google Scholar 

  29. O. H. Lowry, O. H. Rosenbrough, N. J. Farr and R. Randall, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  Google Scholar 

  30. R. S. Cockrell, E. J. Harris and B. C. Pressman, Nature 215, 1487–1488 (1967).

    PubMed  Google Scholar 

  31. E. Rossi and G. F. Azzone, Eur. J. Biochem. 12, 319–327 (1970).

    PubMed  Google Scholar 

  32. H. Haaker, J. A. Berden, R. Kraayenhof, M. Katan and K. van Dam, in: Biochemistry and Biophysics of Mitochondrial Membranes, (G. F. Azzone, E. Carafoli, A. L. Lehninger, E. Quagliariello and N. Siliprandi, Eds.), Acad. Press, New York and London, pp. 329–340 (1972).

    Google Scholar 

  33. D. R. Hunter and R. A. Capaldi, Biochem. Biophys. Res. Commun. 56, 623–628 (1974).

    PubMed  Google Scholar 

  34. M. Klingenberg, R. W. Wulf, H. W. Heldt and E. Pfaff, FEBS Symp., Vol. 17, 59–77 (1969).

    Google Scholar 

  35. B. C. Pressman, E. J. Harris, W. S. Jagger and J. H. Johnson, Proc. Natl. Acad. Sci. U.S. 581, 1949–1956 (1967).

    Google Scholar 

  36. P. F. J. Henderson, J. D. McGivan and J. B. Chappell, Biochem. J. 111, 521–535 (1969).

    PubMed  Google Scholar 

  37. P. Mitchell and J. Moyle, Eur. J. Biochem. 7, 471–484 (1969).

    PubMed  Google Scholar 

  38. E. Rossi and G. F. Azzone, Eur. J. Biochem. 7, 418–426 (1969).

    PubMed  Google Scholar 

  39. P. Hinkle and P. Mitchell, J. Bioenerg. 1, 45–60 (1970).

    PubMed  Google Scholar 

  40. E. Racker, C. Burstein, A. Loyter and R. O. Christiansen, in: Electron Transport and Energy Conservation, (J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater, Eds.), Adriatica Editrice, Bari, Italy, pp. 235–252 (1970).

    Google Scholar 

  41. R. A. Capaldi, Biochim. Biophys. Acta 303, 237–241 (1973).

    PubMed  Google Scholar 

  42. P. Mitchell and J. Moyle, in: Electron Transport and Energy Conservation, (J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater, Eds.), Adriatica Editrice, Bari, Italy, pp. 575–587 (1970).

    Google Scholar 

  43. W. J. Vail and R. K. Riley, FEBS Lett. 40, 269–273 (1974).

    PubMed  Google Scholar 

  44. M. Klingenberg and G. von Jagow, in: Electron Transport and Energy Conservation, (J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater, Eds.), Adriatica Editrice, Bari, Italy, pp. 281–290 (1970).

    Google Scholar 

  45. M. Klingenberg, H. W. Heldt and E. Pfaff, in: The Energy Level and Metabolic Control in Mitochondria, (S. Papa, J. M. Tager, E. Quagliariello and E. C. Slater, Eds.), Adriatica Editrice, Bari, Italy, pp. 237–253 (1969).

    Google Scholar 

  46. E. C. Slater, J. Rosing and A. Mol, Biochim. Biophys. Acta 292, 534–553 (1973).

    PubMed  Google Scholar 

  47. R. S. Cockrell, E. J. Harris and B. C. Pressman, Biochemistry 5, 2326–2335 (1966).

    PubMed  Google Scholar 

  48. R. J. van de Stadt, B. L. de Boer and K. van Dam, Biochim. Biophys. Acta 292, 338–349 (1973).

    PubMed  Google Scholar 

  49. R. J. van de Stadt and K. van Dam, Biochim. Biophys. Acta 347, 240–252 (1974).

    PubMed  Google Scholar 

  50. M. E. Pullman and G. C. Monroy, J. Biol. Chem. 238, 3762–3769 (1963).

    PubMed  Google Scholar 

  51. Y. Kagawa, Biochim. Biophys. Acta 265, 297–338 (1972).

    PubMed  Google Scholar 

  52. D. F. Wilson and P. L. Dutton, Arch. Biochem. Biophys. 136, 583–584 (1970).

    PubMed  Google Scholar 

  53. J. G. Lindsay and D. F. Wilson, Biochemistry 11, 4613–4621 (1972).

    PubMed  Google Scholar 

  54. M. F. Perutz, Nature 228, 726–739 (1970).

    PubMed  Google Scholar 

  55. Y. Kagawa and E. Racker, J. Biol. Chem. 241, 2467–2474 (1966).

    PubMed  Google Scholar 

  56. G. Weber, Proc. Natl. Acad. Sci. U.S. 69, 3000–3003 (1972).

    Google Scholar 

  57. G. Weber, Ann. N.Y. Acad. Sci. 227, 486–496 (1974).

    PubMed  Google Scholar 

  58. R. Casadio, A. Baccarini-Melandri and B. A. Melandri, Eur. J. Biochem. 47, 121–128 (1974).

    PubMed  Google Scholar 

  59. P. C. Hinkle and L. L. Horstman, J. Biol. Chem. 246, 6024–6028 (1971).

    PubMed  Google Scholar 

  60. S. Papa, F. Guerrieri, L. Rossi-Bernardi and J. M. Tager, Biochim. Biophys. Acta 197, 100–103 (1970).

    PubMed  Google Scholar 

  61. B. Chance, J. Biol. Chem. 236, 1544–1554 (1961).

    PubMed  Google Scholar 

  62. B. Chance and G. Hollunger, J. Biol. Chem. 236, 1577–1584 (1961).

    PubMed  Google Scholar 

  63. M. Klingenberg and P. Schollmeyer, Biochem. Z. 335, 243–262 (1961).

    PubMed  Google Scholar 

  64. M. Klingenberg and P. Schollmeyer, Biochem. Z. 335, 263–272 (1961).

    PubMed  Google Scholar 

  65. C. S. Owen and D. F. Wilson, Arch. Biochem. Biophys. 161, 581–591 (1974).

    PubMed  Google Scholar 

  66. M. Erecinska, R. L. Veech and D. F. Wilson, Arch. Biochem. Biophys. 160, 412–421 (1974).

    PubMed  Google Scholar 

  67. P. Mitchell, in: Energy Transduction in Respiration and Photosynthesis, (E. Quagliariello, S. Papa and C. S. Rossi, Eds.), Adriatica Editrice, Bari, Italy, pp. 123–152 (1971).

    Google Scholar 

  68. P. Mitchell, Mitochondria/Biomembranes, FEBS Symp. 28, 353–370 (1972).

    Google Scholar 

  69. D. F. Wilson and M. Erecinska, Mitochondria/Biomembranes, FEBS Symp. 28, 119–132 (1972).

    Google Scholar 

  70. J. S. Leigh, Jr., D. F. Wilson, C. S. Owen and T. E. King, Arch. Biochem. Biophys. 160, 476–486 (1974).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This solicited article reviews recent progress in our studies on the mechanism of energy transduction in mitochondria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wikström, M.K.F., Saari, H.T. Conformational changes in cytochromeaa 3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction. Mol Cell Biochem 11, 17–33 (1976). https://doi.org/10.1007/BF01792831

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01792831

Keywords

Navigation