Skip to main content
Log in

A scaling formalism for the representation of rotational energy transfer in OH (A 2Σ+) in combustion experiments

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In order to predict spectra and temporal decays of the OH radical measured by Laser-Induced Fluorescence (LIF), the collisional energy transfer between different quantum states must be taken into account. At the elevated temperatures relevant for combustion studies, the large number of interacting quantum states and corresponding state-to-state energy transfer coefficients precludes the experimental measurement of all necessary information for the appropriate mixtures of colliders. Therefore, a scaling procedure has been devised which allows the representation of the matrix of Rotational Energy Transfer (RET) coefficients on the basis of measured data with four scaling coefficients. The scaling coefficients have been determined by comparison of the calculated RET rates with available measured data. The mathematical formalism for the scaling law - the ECS-EP law - is based on the Energy Corrected Sudden (ECS) law and includes an Exponential Power law (EP) for the representation of the basis coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kohse-Höinghaus: Prog. Energy Combust. Sci.20,203 (1994)

    Google Scholar 

  2. R.J. Cattolica: Combust. Flame44, 43 (1982)

    Google Scholar 

  3. K.C. Lick, W. Thielen: J. Quant. Spectrosc. Radiat. Transfer20, 71 (1978)

    Google Scholar 

  4. J.H. Bechtel, R.E. Teets: Appl. Opt.18, 4138 (1979)

    Google Scholar 

  5. R.P. Lucht, D.W. Sweeney, N.M. Laurendeau: Combust. Sci. Tech.42, 259 (1985)

    Google Scholar 

  6. P. Ewart, S.V. O'Leary: Opt. Lett.11, 279 (1986)

    Google Scholar 

  7. T. Dreier, D.J. Rakestraw: Appl. Phys. B50, 479 (1990)

    Google Scholar 

  8. M. Winter, P.P. Radi, A. Stampanom: InProc 24th Symp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh, PA 1992) p. 1645

    Google Scholar 

  9. H. Bervas, B. Attal-Trétout, S. LeBoiteux, J.P. Taran: J. Phys. B25, 949 (1992)

    Google Scholar 

  10. B. Attal-Trétout, S.C. Schmidt, E. Crété, P. Dumas, J.P. Taran: J. Quant. Spectrosc. Radiat. Transfer43, 351 (1990)

    Google Scholar 

  11. B. Attal-Trétout, P. Bouchardy, P. Magre, M. Péalat, J.P. Taran: Appl. Phys. B51, 17 (1990)

    Google Scholar 

  12. H.M. Hertz, M. Aldén: Appl. Phys. B42, 97 (1987)

    Google Scholar 

  13. R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum: Appl. Phys. B47, 287 (1988)

    Google Scholar 

  14. V. Sick, A. Arnold, E. Diessel, T. Dreier, W. Ketterle, B. Lange, J. Wolfrum, K.U. Thiele, F. Behrendt, J. Warnatz: InProc. 23rd Symp. (Int'l) on Combustion (The Combustion Institute,Pittsburgh, PA 1990) p. 495

    Google Scholar 

  15. B.K. McMillin, M.P. Lee, P.H. Paul, R.K. Hanson: InProc. 23rd Symp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh, PA 1990) p. 1909

    Google Scholar 

  16. M. Versluis, M. Boogaarts, R. Klein-Douwel, B. Thijs, W. De Jongh, A. Braam, J.J. ter Meulen: Appl. Phys. B55, 164 (1992)

    Google Scholar 

  17. U. Meier, R. Kienle, I. Plath, K. Kohse-Höinghaus: Ber. Bunsenges. Phys. Chem.96, 1401 (1992)

    Google Scholar 

  18. S.H. Stårner, R.W. Bilger, R.W. Dibble, R.S. Barlow, D.C. Fourguette, M.B. Long: InProc. 24th Symp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh, PA 1992) p. 341

    Google Scholar 

  19. P. Andresen, H. Schlüter, D. Wolff, W. Hentschel, W. Oppermann, E. Rothe: Appl. Opt.31, 7684 (1992)

    Google Scholar 

  20. C. Morley: Combust. Flame47, 67 (1982)

    Google Scholar 

  21. S. Zabarnick: Combust. Flame85, 27 (1991)

    Google Scholar 

  22. M.C. Branch, M.C. Sadeqi, A.A. Alfarayedhi, P.J. van Tiggelen: Combust. Flame83, 228 (1991)

    Google Scholar 

  23. D.E. Heard, J.B. Jeffries, G.P. Smith, D.R. Crosley: Combust. Flame88, 137 (1992)

    Google Scholar 

  24. E.C. Rea, Jr., R.K. Hanson: Appl. Opt.27, 4454 (1988)

    Google Scholar 

  25. K.J. Rensberger, J.B. Jeffries, R.A. Copeland, K. Kohse-Höinghaus, M.L. Wise, D.R. Crosley: Appl. Opt.28, 3556 (1989)

    Google Scholar 

  26. A.Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-Höinghaus: Appl. Phys. B50, 513 (1990)

    Google Scholar 

  27. R.J. Cattolica, T.G. Mataga: Chem. Phys. Lett.182, 623 (1991)

    Google Scholar 

  28. A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum: Ber. Bunsenges. Phys. Chem.96, 1388 (1992)

    Google Scholar 

  29. D.E. Heard, D.R. Crosley, J.B. Jeffries, G.P. Smith, A. Hirano: J. Chem. Phys.96, 4366 (1992)

    Google Scholar 

  30. J.M. Seitzman, J.L. Palmer, A.L. Antonio, R.K. Hanson, P.A. DeBarber, C.F. Hess: AIAA Paper 93-0802, 31st Aerospace Sciences Meeting, Reno, NV (1993).

  31. R.S. Barlow, R.W. Dibble, Y.-Y. Chen, R.P. Lucht: Combust. Flame82, 235 (1990)

    Google Scholar 

  32. J.M. Seitzman, A. Üngüt, P.H. Paul, R.K. Hanson: InProc. 23rd Symp. (Int'l) on Combustion (The Combustion Institute, Pittsburgh, PA 1990) p. 637

    Google Scholar 

  33. B. Atakan, V. Jörres, K. Kohse-Höinghaus: Ber. Bunsenges. Phys. Chem.97, 1706 (1993)

    Google Scholar 

  34. A. Jörg, U. Meier, K. Kohse-Höinghaus: J. Chem. Phys.93,6453 (1990)

    Google Scholar 

  35. A. Jörg, A. Degli Esposti, H.-J. Werner: J. Chem. Phys.93, 8757 (1990)

    Google Scholar 

  36. A. Degli Esposti, H.-J. Werner: J. Chem. Phys.93, 3351 (1990)

    Google Scholar 

  37. A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus: Appl. Phys. B55, 305 (1992)

    Google Scholar 

  38. R. Kienle, A. Jörg, K. Kohse-Höinghaus: Appl. Phys. B56, 249 (1993)

    Google Scholar 

  39. M.P. Lee, R. Kienle, K. Kohse-Höinghaus: Appl. Phys. B58, 447 (1994)

    Google Scholar 

  40. R. Kienle: Experiment und Modellentwicklung zum Einfluß des stoßinduzierten Energietransfers auf die laserinduzierte Fluoreszenz von OH (A 2 Σ +) unter Flammenbedingungen. Dissertation, DLR Stuttgart/Universität Bielefeld, Germany (1994)

    Google Scholar 

  41. R. Kienle, M.P. Lee, K. Kohse-Höinghaus: Appl. Phys. B62,583 (1996)

    Google Scholar 

  42. T.A. Brunner, D. Pritchard: Adv. Chem. Phys.50, 589 (1982)

    Google Scholar 

  43. D. Robert: InVibrational Spectra and Structure, Vol. 17B ed. by H.D. Bist, J.R. Durig, J.F. Sullivan (Elsevier, Amsterdam 1989) p. 57

    Google Scholar 

  44. C. Chan, J.W. Daily: Appl. Opt.19,1357 (1980)

    Google Scholar 

  45. I. Procaccia, R.D. Levine: J. Chem. Phys.64, 808 (1976)

    Google Scholar 

  46. T.A. Brunner, R.D. Driver, N. Smith, D. Pritchard: Phys. Rev. Lett.41, 856 (1978)

    Google Scholar 

  47. R. Goldflam, S. Green, D.J. Kouri: J. Chem. Phys.67, 4149 (1977)

    Google Scholar 

  48. V. Khare: J. Chem. Phys.68, 4631 (1978)

    Google Scholar 

  49. A.E. DePristo, S.D. Augustin, R. Ramaswamy, H. Rabitz: J. Chem. Phys.71, 850 (1979)

    Google Scholar 

  50. J.M. Brown, J.T. Hougen, K.-P. Huber, J.W.C. Johns, I. Kopp, H. Lefebvre-Brion, A.J. Merer, D.A. Ramsay, J. Rostas, R.N. Zare: J. Mol. Spectrosc.55, 500 (1975)

    Google Scholar 

  51. M.H. Alexander: J. Chem. Phys.76, 3637 (1982)

    Google Scholar 

  52. M.H. Alexander, J.E. Smedley, G.C. Corey: J. Chem. Phys.84, 3049 (1986)

    Google Scholar 

  53. T.A. Griffin, A. Jörg, U. Meier, K. Kohse-Höinghaus: InProc. 11th Int'l Symp. on Gas Kinetics, Assisi, Italy (1990)

  54. D.W. Marquardt: J. Soc. Ind. Appl. Math.11, 431 (1963)

    Google Scholar 

  55. B. Sanctuary: Chem. Phys. Lett.62, 378 (1979)

    Google Scholar 

  56. R.K. Lengel, D.R. Crosley: J. Chem. Phys.67, 2085 (1977)

    Google Scholar 

  57. D. Stepowski, M.-J. Cottereau: J. Chem. Phys.74, 6674 (1981)

    Google Scholar 

  58. J. Burris, J.J. Butler, T.J. McGee, W.S. Heaps: Chem. Phys.124, 251 (1988)

    Google Scholar 

  59. R.P. Lucht, D.W. Sweeney, N.M. Laurendeau: Appl. Opt.25, 4086 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kienle, R., Lee, M.P. & Kohse-Höinghaus, K. A scaling formalism for the representation of rotational energy transfer in OH (A 2Σ+) in combustion experiments. Appl. Phys. B 63, 403–418 (1996). https://doi.org/10.1007/BF01828746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01828746

PACS

Navigation