Skip to main content
Log in

Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The problem of path planning for an automaton moving in a two-dimensional scene filled with unknown obstacles is considered. The automaton is presented as a point; obstacles can be of an arbitrary shape, with continuous boundaries and of finite size; no restriction on the size of the scene is imposed. The information available to the automaton is limited to its own current coordinates and those of the target position. Also, when the automaton hits an obstacle, this fact is detected by the automaton's “tactile sensor.” This information is shown to be sufficient for reaching the target or concluding in finite time that the target cannot be reached. A worst-case lower bound on the length of paths generated by any algorithm operating within the framework of the accepted model is developed; the bound is expressed in terms of the perimeters of the obstacles met by the automaton in the scene. Algorithms that guarantee reaching the target (if the target is reachable), and tests for target reachability are presented. The efficiency of the algorithms is studied, and worst-case upper bounds on the length of generated paths are produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Schwartz and M. Sharir, On the “piano movers” problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers,Comm. Pure Appl. Math.,36 (1983), 345–398.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Lozano-Perez and M. Wesley, An algorithm for planning collision-free paths among polyhedral obstacles,Comm. ACM,22 (1979), 560–570.

    Article  Google Scholar 

  3. H. Moravec, The Stanford cart and the CMU rover,Proc. IEEE,71 (1983), 872–874.

    Article  Google Scholar 

  4. R. A. Brooks, Solving the find-path problem by good representation of free space,IEEE Trans. Systems Man Cybernet.,13 (1983).

  5. T. O. Binford, Visual perception by computer,Proceeding of the IEEE Systems Science and Cybernetics Conference, Miami, FL, 1971.

  6. J. Reif, Complexity of the mover's problem and generalizations,Proceedings of the 20th Symposium on the Foundations of Computer Science, 1979.

  7. D. L. Pieper, The kinematics of manipulators under computer control, Ph.D. Thesis, Stanford University, 1968.

  8. R. Paul, Modeling trajectory calculation and servoing of a computer controlled arm, Ph.D. Thesis, Stanford University, 1972.

  9. J. T. Schwartz and M. Sharir, On the “piano movers” problem: II. General techniques for computing topological properties of real algebraic manifolds,Adv. in Appl. Math.,4 (1983), 298–351.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Hopcroft, D. Joseph, and S. Whitesides, On the movement of robot arms in 2-dimensional bounded regions,Proceedings of the IEEE Foundations of Computer Science Conference, Chicago, IL, 1982.

  11. B. Bullock, D. Keirsey, J. Mitchell, T. Nussmeier, and D. Tseng, Autonomous vehicle control: an overview of the hughes project,Proceedings of the IEEE Computer Society Conference “Trends and Applications, 1983: Automating Intelligent Behavior”, Gaithersburg, MD, 1983.

  12. A. M. Thompson, The navigation system of the JPL robot,Proceedings of the Fifth Joint International Conference on Artificial Intelligence, Cambridge, MA, 1977.

  13. D. M. Kersey, E. Koch, J. McKisson, A. M. Meystel, and J. S. B. Mitchell, Algorithm of navigation for a mobile robot,Proceedings of the International Conference on Robotics, Atlanta, GA, 1984.

  14. M. Blum and D. Kozen, On the power of the compass (or, why mazes are easier to search than graphs),Proceedings of the 19th Annual Symposium on Foundation of Computer Science, Ann Arbor, MI, 1978.

  15. W. Lipski and F. Preparata, Segments, rectangles, contours,J. Algorithms,2 (1981), 63–76.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Abelson and A. diSessa,Turtle Geometry, MIT Press, Cambridge, MA, 1980, pp. 176–199.

    Google Scholar 

  17. C. Yap, Algorithmic motion planning, inAdvances in Robotics, Vol. 1 (J. Schwartz and C. K. Yap, eds.), Lawrence Erlbaum, NJ, 1986.

  18. L. Meijdam and A. de Zeeuw, On expectations, information, and dynamic game equilibria, inDynamic Games and Applications in Economics (T. Basar, ed.), Springer-Verlag, New York, 1986.

    Google Scholar 

  19. E. Moore, The firing squad synchronization problem, inSequential Machines (E. Moore, ed.), Reading, MA, 1964.

  20. J. Traub, G. Wasilkowski, and H. Wozniakowski,Information, Uncertainty, Complexity, Addison-Wesley, Reading, MA, 1983.

    MATH  Google Scholar 

  21. J. Reif, A survey on advances in the theory of computational robotics, inAdaptive and Learning Systems (K. Narendra, ed.), Plenum, New York, 1986.

    Google Scholar 

  22. W. S. Massey,Algebraic Topology, Harcourt, Brace, & World, New York, 1967.

    MATH  Google Scholar 

  23. V. Lumelsky, Effect of robot kinematics on motion planning in unknown environment,Proceedings of the 24th IEEE Conference on Decision and Control, Fort Lauderdale, FL, 1985.

  24. V. Lumelsky, Continuous motion planning in unknown environment for a 3D cartesian robot arm,Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, 1986.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Chee-keng Yap

Supported in part by the National Science Foundation Grant DMC-8519542.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumelsky, V.J., Stepanov, A.A. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2, 403–430 (1987). https://doi.org/10.1007/BF01840369

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01840369

Key words

Navigation