Skip to main content
Log in

Globally convergent homotopy algorithms for nonlinear systems of equations

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Probability-one homotopy methods are a class of algorithms for solving nonlinear systems of equations that are accurate, robust, and converge from an arbitrary starting point almost surely. These new globally convergent homotopy techniques have been successfully applied to solve Brouwer fixed point problems, polynomial systems of equations, constrained and unconstrained optimization problems, discretizations of nonlinear two-point boundary value problems based on shooting, finite differences, collocation, and finite elements, and finite difference, collocation, and Galerkin approximations to nonlinear partial differential equations. This paper introduces, in a tutorial fashion, the theory of globally convergent homotopy algorithms, deseribes some computer algorithms and mathematical software, and presents several nontrivial engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower, E. and Georg, K., ‘Simplicial and continuation methods for approximating fixed points’,SIAM Rev. 22, 1980, 28–85.

    Google Scholar 

  2. Barthelemy, J.-F. M. and Riley, M. F., ‘Improved multi-level optimization approach for the design of complex engineering system’,AIAA J. 26, 1988, 353–360.

    Google Scholar 

  3. Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York, 1982.

    Google Scholar 

  4. Billups S. C., An augmented Jacobian matrix algorithm for tracking homotopy zero curves, MS Thesis. Dept. of Computer Sci., VPI & SU, Blacksburg, VA, Sept., 1985.

    Google Scholar 

  5. Chow, S. N., Mallet-Paret, J., and Yorke, J. A., ‘Finding zeros of maps: Homotopy methods that are constructive with probability one’,Math. Comput. 32, 1978, 887–899.

    Google Scholar 

  6. deBoor, C., A Practical Guide to Splines. Springer-Verlag, New York, 1978.

    Google Scholar 

  7. Dennis, J. E., and Schnabel, R. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

    Google Scholar 

  8. Ellis, G. H. and Watson, L. T., ‘A parallel algorithm for simple roots of polynomials’,Comput. Math. Appl. 11, 1984, 107–121.

    Google Scholar 

  9. Eringen, A. C., ‘Simple microfluids’,Int. J. Engng. Sci. 2, 1964, 205–217.

    Google Scholar 

  10. Eringen, A. C., ‘Theory of micropolar fluids’,J. Math. Mech. 16, 1966, 1–18.

    Google Scholar 

  11. Heruska, M. W., Watson, L. T., and Sankara, K. K., ‘Micropolar flow past a porous stretching sheet’,Comput. & Fluids 14, 1986, 117–129.

    Google Scholar 

  12. Kamat, M. P., Watson, L. T., and Venkayya, V. B., ‘A quasi-Newton versus a homotopy method for nonlinear structural analysis’,Comput. & Structures 17, 1983, 579–585.

    Google Scholar 

  13. Keller, H. B., Numerical Solution of Two-point Boundary Value Problems, Society for Industrial and Applied Mathematics, Philadelphia, 1976.

    Google Scholar 

  14. Kreisselmeier, G. and Steinhauser, R., ‘Systematic control design by optimizing a vector performance index’. Proc. IFAC Symp. on Computer Aided Design of Control Systems. Zurich. Switzerland. 1979, pp. 113–117.

  15. Kubicek, M., ‘Dependence of solutions of nonlinear systems on a parameter’.ACM Trans. Math. Software 2, 1976, 98–107.

    Google Scholar 

  16. Kumar, S. K., Thacker, W. I., and Watson, L. T., ‘Magnetohydrodynamic flow and heat transfer about a rotating disk with suction and injection at the disk surface’,Comput. & Fluids 16, 1988, 183–193.

    Google Scholar 

  17. Kumar, S. K., Thacker, W. I., and Watson, L. T., ‘Magnetohydrodynamic flow past a porous rotating disk in a circular magnetic field’,Internat. J. Numr. Methods Fluids 8, 1988, 659–669.

    Google Scholar 

  18. Kumar, S. K., Thacker, W. I., and Watson, L. T., ‘Magnetohydrodynamic flow between a solid rotating disk and a porous stationary disk’,Appl. Math. Modelling 13, 1989, 494–500.

    Google Scholar 

  19. Kumar, S. K., Thacker, W. I., and Watson, L. T., ‘Rotating magnetohydrodynamic flow about a stationary disk in a circular magnetic field’,Comput. Math. Appl. 17, 1989, 1435–1439.

    Google Scholar 

  20. Kwok, H. H., Kamat, M. P., and Watson, L. T., ‘Location of stable and unstable equilibrium configurations using a model trust region quasi-Newton method and tunnelling’,Comput. & Structures 21, 1985, 909–916.

    Google Scholar 

  21. Mangasarian, O. L., ‘Equivalence of the complementarity problem to a system of nonlinear equations’,SIAM J. Appl. Math. 31, 1976, 89–92.

    Google Scholar 

  22. Mejia, R., ‘CONKUB: A conversational path-follower for systems of nonlinear equations’,J. Comput. Phys. 63, 1986, 67–84.

    Google Scholar 

  23. Moré, J. J. Garbow, B. S., and Hillstrom, K.E., User Guide for MINPACK-1, ANL-80-74, Argonne National Laboratory, 1980.

  24. Morgan, A. P., ‘A transformation to avoid solutions at infinity for polynomial systems’,Appl. Math. Comput. 18, 1986, 77–86.

    Google Scholar 

  25. Morgan, A. P., ‘A homotopy for solving polynomial systems’,Appl. Math. Comput. 18, 1986, 87–92.

    Google Scholar 

  26. Morgan, A. P., Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems, Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  27. Morgan, A. P. and Watson, L. T., ‘A globally convergent parallel algorithm for zeros of polynomial systems’,Nonlinear Anal. 13, 1989, 1339–1350.

    Google Scholar 

  28. Morgan, A. P. and Watson, L. T., ‘Solving nonlinear equations on a hypercube’, inSuper and Parallel Computers and Their Impact on Civil Engineering, M. P. Kamat (ed.). ASCE Structures Congress '86, New Orleans, LA, 1986, pp. 1–15.

  29. Pelz, W. and Watson, L. T., ‘Message length effects for solving polynomial systems on a hypercube’,Parallel Comput.10, 1989, 161–176.

    Google Scholar 

  30. Poore, A. B. and Soria, D., Continuation Algorithms for Linear Programming, manuscript.

  31. Poore, A. B. and Al-Hassan, Q., ‘The expanded Lagrangian system for constrained optimization problems’,SIAM J. Control Optim. 26, 1988, 417–427.

    Google Scholar 

  32. Rheinboldt, W. C. and Burkardt, J. V., ‘Algorithm 596: A program for a locally parameterized continuation process’.ACM Trans. Math. Software 9, 1983, 236–241.

    Google Scholar 

  33. Scarf, H., The Computation of Economic Equilibria. Yale University Press. 1973.

  34. Shampine, L. F. and Gordan, M. K., Computer Solution of Ordinary Differential Equations: The Initial Value Problem. W. H. Freeman, San Francisco, 1975.

    Google Scholar 

  35. Shin, Y. S., Haftka, R. T., Watson, L. T., and Plaut, R. H., ‘Tracing structural optima as a function of available resources by a homotopy method’,Comput. Methods Appl. Mech. Engrg. 70, 1988, 151–164.

    Google Scholar 

  36. Shin, Y. S., Haftka, R. T., Watson, L. T., and Plaut, R. H., ‘Design of laminated plates for maximum buckling load’,J. Composite Materials 23, 1989, 348–369.

    Google Scholar 

  37. Vasudevan, G., Watson, L. T., and Lutze, F. H., A homotopy approach for solving constrained optimization problems. Tech. Rep. 88-50. Dept. of Computer Sci., VPI&SU. Blacksburg, VA, 1988.

    Google Scholar 

  38. Wang, C. Y. and Watson, L. T., ‘Squeczing of a viscous fluid between clliptic plates’,Appl. Sci. Res. 35, 1979. 195–207.

    Google Scholar 

  39. Wang, C. Y. and Watson, L. T., ‘Viscous flow between rotating discs with injection on the porous dise’,Z. Angew. Math. Phys. 30, 1979, 773–787.

    Google Scholar 

  40. Wang, C. Y. and Watson, L. T., ‘On the large deformations of C-shaped springs’,Internat. J. Mech. Sci. 22, 1980, 395–400.

    Google Scholar 

  41. Wang, C. Y. and Watson, L. T., ‘Theory of the constant force spring’,J. Appl. Mech. 47, 1980, 956–958.

    Google Scholar 

  42. Wang, C. Y. and Watson, L. T., ‘The fluid-filled cylindrical membrane container’,J. Engrg. Math. 15, 1981, 81–88.

    Google Scholar 

  43. Wang, C. Y. and Watson, L. T., ‘Equilibrium of heavy clastic cylindrical shells’,J. Appl. Mech. 48, 1981, 582–586.

    Google Scholar 

  44. Wang, C. Y. and Watson, L. T., ‘The elastic catenary’,Internat. J. Mech. Sci. 24, 1982, 349–357.

    Google Scholar 

  45. Wang, C. Y. and Watson, L. T., ‘Free rotation of a circular ring about a diameter’,Z. Angew. Math. Phys. 34, 1983, 13–24.

    Google Scholar 

  46. Wang, C. Y., Watson, L. T., and Kamat, M. P., ‘Bucking, postbuckling and the flow through a tethered elastic cylinder under external pressure’,J. Appl. Mech. 50, 1983, 13–18.

    Google Scholar 

  47. Watson, L. T., Billups, S. C., and Morgan, S. P., ‘HOMPACK: A suite of codes for globally convergent homotopy algorithms’. Tech. Rep. 85-34. Dept. of Industrial and Operations Eng., Univ. of Michigan. Ann Arbor. MI, 1985. andACM Trans. Math. Software 13, 1987, 281–310.

    Google Scholar 

  48. Watson, L. T., Bixler, J. P., and Poore, A. B., ‘Continuous homotopies for the linear complementarity problem’. Tech. Report TR-87-38. Dept. of Computer Sci. VPI&SU. Blacksburg, VA. 1987 andSIAM J. Matrix Anal. Appl. 10, 1989, 259–277.

    Google Scholar 

  49. Watson, L. T. and Fenner, D., ‘Chow-Yorke algorithm for fixed points or zeros of C2 maps’.ACM TOMS 6, 1980. 252–260.

    Google Scholar 

  50. Watson, L. T. and Haftka, R. T., ‘Modern homotopy methods in optimization’.Comput. Methods Appl. Mech. Engrg. 74, 1989, 289–305.

    Google Scholar 

  51. Watson, L. T., Holzer, S. M., and Hansen, M. C., ‘Tracking nonlinear equilibrium paths by a homotopy method’.Nonlinear Anal. 7, 1983, 1271–1282.

    Google Scholar 

  52. Watson, L. T., Kamat M. P., and Reaser, M. H., ‘A robust hybrid algorithm for computing multiple equilibrium solutions’.Engrg. Comput. 2, 1985, 30–34.

    Google Scholar 

  53. Watson, L. T., Li, T. Y., and Wang, C. Y., ‘Fluid dynamics of the elliptic porous slider.J. Appl. Mech. 45, 1978. 435–436.

    Google Scholar 

  54. Watson, L. T., Sankara, K. K., and Mounfield, L. C., ‘Deceleration of a porous rotating disk in a viscous fluid’.Internat. J. Engrg. Sci. 23, 1985, 131–137.

    Google Scholar 

  55. Watson, L. T. and Scott, L. R., ‘Solving Galerkin approximations to nonlinear two-point boundary value problems by a globally convergent homotopy method’.SIAM J. Sci. Stat. Comput. 8, 1987, 768–789.

    Google Scholar 

  56. Watson, L. T. and Scott, M. R., ‘Solving spline-collocation approximations to nonlinear two-point boundary-value problems by a homotopy method’.Appl. Math. Comput. 24, 1987, 333–357.

    Google Scholar 

  57. Watson, L. T. and Wang, C. Y., ‘A homotopy method applied to elastica problems’.Internat. J. Solids Structures 17, 1981, 29–37.

    Google Scholar 

  58. Watson, L. T. and Wang, C. Y., ‘Deceleration of a rotating dise in a viscous fluid’.Phys. Fluids 22, 1979, 2269–2267.

    Google Scholar 

  59. Watson, L. T. and Wang, C. Y., ‘The circular leaf spring’.Acta Mech. 40, 1981, 25–32.

    Google Scholar 

  60. Watson, L. T. and Wang, C. Y., ‘Hanging an elastic ring’.Internat. J. Mech. Sci. 23, 1981, 161–168.

    Google Scholar 

  61. Watson, L. T. and Wang, C. Y., ‘Overhang of a heavy elastic sheet’,Z. Angew. Math. Phys. 33, 1982, 17–23.

    Google Scholar 

  62. Watson, L. T. and Wang, C. Y., ‘Periodically supported heavy elastic sheet’.J. Engrg. Mech..109, 1983, 811–820.

    Google Scholar 

  63. Watson, L. T. and Wang, C. Y., ‘The equilibrium states of a heavy rotating columnInternat. J. Solids Structures 19, 1983, 653–658.

    Google Scholar 

  64. Watson, L. T. and Yang, W. H., ‘Optimal design by a homotopy method’,Applicable Anal. 10, 1980, 275–284.

    Google Scholar 

  65. Watson, L. T. and Yang, W. H., ‘Methods for optimal engineering design problems based on globally convergent methods’.Comput. & Structures 13, 1981, 115–119.

    Google Scholar 

  66. Watson, L. T., ‘A globally convergent algorithm for computing fixed points of C2 maps’.Appl. Math. Comput. 5, 1979, 297–311.

    Google Scholar 

  67. Watson, L. T., ‘Numerical study of porous channel flow in a rotating system by a homotopy method”.J. Comput. Appl. Math. 7, 1981, 21–26.

    Google Scholar 

  68. Watson, L. T., ‘Computational experience with the Chow-Yorke algorithm’.Math. Programming 19, 1980, 92–101.

    Google Scholar 

  69. Watson, L. T., ‘Fixed points of C2 maps’.J. Comput. Appl. Math. 5, 1979, 131–140.

    Google Scholar 

  70. Watson, L. T., ‘Solving the nonlinear complementarity problem by a homotopy method’.SIAM J. Control Optim.17, 1979, 36–46.

    Google Scholar 

  71. Watson, L. T., ‘An algorithm that is globally convergent with probability one for a class of nonlinear two-point boundary value problems’.SIAM J. Numer. Anal. 16, 1979, 394–401.

    Google Scholar 

  72. Watson, L. T., ‘Solving finite difference approximations to nonlinear two-point boundary value problems by a homotopy method’.SIAM J. Sci. Stat. Comput. 1, 1980, 467–480.

    Google Scholar 

  73. Watson, L. T., ‘Engineering applications of the Chow-Yorke algorithm’.Appl. Math. Comput. 9, 1981. 111–133.

    Google Scholar 

  74. Watson, L. T., ‘Numerical linear algebra aspects of globally convergent homotopy methods’. Tech. Report TR-85-14. Dept. of Computer Sci., VPI&SU, Blacksburg, VA, 1985, andSIAM Rev. 28. 1986, 529–545.

    Google Scholar 

  75. Watson, L. T., ‘Globally convergent homotopy methods: a tutorial’.Appl. Math. Comput. 31BK, 1989, 369–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by DOE Grant DE-FG05-88ER25068, NASA Grant NAG-1-1079, and AFOSR Grant 89-0497.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, L.T. Globally convergent homotopy algorithms for nonlinear systems of equations. Nonlinear Dyn 1, 143–191 (1990). https://doi.org/10.1007/BF01857785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01857785

Key words

Navigation