Skip to main content
Log in

The relationship between ATP and an electrogenic pump in the plasma membrane ofNeurospora crassa

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Sudden respiratory blockade has been used to study rapid changes of the resting membrane potential, of intracellular adenosine 5′-triphosphate (ATP) levels, and of pyridine nucleotide reduction inNeurospora crassa. Membrane depolarization occurs with a first-order rate constant of 0.167 sec−1, following a lag period of about 4 sec, at 24°C (ambient temperature). This depolarization is several-fold too slow to be directly linked to electron transfer, as judged from the rate of pyridine nucleotide reduction, but has essentially the same rate constant as the decay of ATP. The latter process, however, shows no lag period after the respiratory inhibitor is introduced. Plots of membrane potential versus the intracellular ATP concentration yield saturation curves which are readily fitted by a Michaelis equation, to which is added a constant term representing the diffusion component of membrane potential. Parameters obtained from such fits indicate the maximal voltage which the pump can develop at high ATP levels to be 300 to 350 mV, with an apparentK 1/2 of 2.0mm. The data strongly suggest that an electrogenic ion pump in the plasma membrane ofNeurospora is fueled by ATP; comparison of the measured membrane potentials with the energy available from hydrolysis of ATP indicates that two ions could be pumped for each molecule of ATP split.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, A. 1965. The release of bound adenosine triphosphatase from isolated bacterial membranes and the properties of the solubilized enzyme.J. Biol. Chem. 240:3675

    PubMed  Google Scholar 

  2. Adrian, R. H. Slayman, C. L. 1966. Membrane potential and conductance during transport of sodium, potassium, and rubidium in frog muscle.J. Physiol. 184:970

    PubMed  Google Scholar 

  3. Anderson, P. M., Wellner, V. P., Rosenthal, G. A., Meister, A. 1970. Carbonylphosphate synthetase (Escherichia coli).In: Methods in Enzymology. H. Tabor and C. W. Tabor, editors. Vol. XVII, p. 235: Metabolism of amino acids and amines, Part A. Academic Press, Inc., New York

    Google Scholar 

  4. Aubert, X., Chance, B., Keynes, R. D. 1964. Optical studies of biochemical events in the electric organ ofElectrophorus.Proc. Roy. Soc., B. 160:211

    Google Scholar 

  5. Brody, S. 1972. Regulation of pyridine nucleotide levels and ratios inNeurospora crassa.J. Biol. Chem. 247:6013

    PubMed  Google Scholar 

  6. Chance, B., Williams, G. R. 1955. Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain.J. Biol. Chem. 217:429

    PubMed  Google Scholar 

  7. Falcoz-Kelly, F., Cohen, G. N. 1970. Aspartokinase II and homoserine dehydrogenase II.In: Methods in Enzymology. H. Tabor and C. W. Tabor, editors. Vol. XVII, p. 699. Metabolism of amino acids and amines, Part A. Academic Press Inc., New York

    Google Scholar 

  8. Fein, H. 1966. Passing current through recording glass micropipette electrodes.IEEE Trans. Bio-med. Eng. 13:211

    Google Scholar 

  9. Fox, C. F. 1972. Membrane assembly.In: Membrane Molecular Biology. C. F. Fox and A. Keith, editors. p. 345. Sinaur Associates, Stamford, Connecticut

    Google Scholar 

  10. Gibson, Q. H. 1963. Inhibitors of gas transport.In: Metabolic Inhibitors: A Comprehensive Treatise. R. M. Hochester and J. H. Quastel, editors. Vol. II, p. 539. Academic Press, Inc., New York

    Google Scholar 

  11. Gonzalez, C. F., Shamoo, Y. E., Brodsky, W. A. 1967. Electrical nature of active chloride transport across short-circuited turtle bladders.Amer. J. Physiol. 212:641

    PubMed  Google Scholar 

  12. Gradmann, D. 1970. Einfluß von Licht, Temperature and Außenmedium auf das elektrische Verhalten vonAcetabularia crenulata.Planta 93:323

    Article  Google Scholar 

  13. Harold, F. M. 1962. Depletion and replenishment of the inorganic polyphosphate pools inNeurospora crassa.J. Bacteriol. 83:1047

    PubMed  Google Scholar 

  14. Harold, F. M. 1972. Conservation and transformation of energy by bacterial membranes.Bact. Rev. 36:172

    PubMed  Google Scholar 

  15. Hers, H. G. 1955. Fructokinase (ketokinase).In: Methods in Enzymology. S. P. Colowick and N. O. Kaplan, editors. Vol. I, p. 286. Academic Press Inc., New York

    Google Scholar 

  16. Hopfer, U., Lehninger, A. L., Thompson, T. E. 1968. Protonic conductance across lipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation.Proc. Nat. Acad. Sci. 59:484

    PubMed  Google Scholar 

  17. Kasbekar, D. K., Durbin, R. P. 1965. An adenosine triphosphatase from frog gastric mucosa.Biochim. Biophys. Acta 105:472

    PubMed  Google Scholar 

  18. Kernan, R. P. 1970. Electrogenic or linked transport.In: Membranes and Ion Transport. E. E. Bittar, editor. Vol. I, p. 395. Wiley-Interscience, New York

    Google Scholar 

  19. Kitasato, H. 1968. The influence of H+ on the membrane potential and ion fluxes ofNitella.J. Gen. Physiol. 52:60

    PubMed  Google Scholar 

  20. Lambowitz, A. M., Slayman, C. W., Slayman, C. L., Bonner, W. D. 1972. The electron transport components of wild type and Poky strains ofNeurospora crassa.J. Biol. Chem. 247:1536

    PubMed  Google Scholar 

  21. Lester, G., Stone, D., Hechter, O. 1958. The effects of deoxycorticosterone and other steroids onNeurospora crassa.Arch. Biochem. Biophys. 75:196

    PubMed  Google Scholar 

  22. MacRobbie, E. A. C. 1970. The active transport of ions in plant cells.Quart. Rev. Biophys. 3:251

    Google Scholar 

  23. Marmor, M. F. 1971. The independence of electrogenic sodium transport and membrane potential in a molluscan neurone.J. Physiol. 218:599

    PubMed  Google Scholar 

  24. Marquardt, D. W. 1963. An algorithm for least-squares estimation on non-linear parameters.J. Soc. Ind. Appl. Math. 11:431

    Google Scholar 

  25. Marsh, C., Militzer, W. 1956. Thermal enzymes. VII: Further data on an adenosine triphosphatase.Arch. Biochem. Biophys. 60:433

    PubMed  Google Scholar 

  26. Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biol. Rev. 41:445

    PubMed  Google Scholar 

  27. Mitchell, P. 1970. Reversible coupling between transport and chemical reactions.In: Membranes and Ion Transport. E. E. Bittar, editor. Vol. I, p. 192. Wiley-Interscience, New York

    Google Scholar 

  28. Phillips, R. C., George, P., Rutman, R. J. 1969. Thermodynamic data for the hydrolysis of adenosine triphosphate as a function of pH, Mg2+ ion concentration, and ionic strength.J. Biol. Chem. 241:3330

    Google Scholar 

  29. Raven, J. A. 1968. Action spectra for photosynthesis and light-stimulated ion transport processes inHydrodictyon africanum.New Phytol. 68:45

    Google Scholar 

  30. Raven, J. A. 1968. Effects of inhibitors on photosynthesis and the active influxes of K and Cl inHydrodictyon africanum.New Phytol. 68:1089

    Google Scholar 

  31. Rehm, W. S. 1966. Electrogenic mechanism of the frog's gastric mucosa.Ann. N.Y. Acad. Sci. 137:591

    PubMed  Google Scholar 

  32. Rehm, W. S. 1972. Proton transport.In: Metabolic Pathways. VI. Metabolic Transport. L. E. Hokin, editor. p. 187. Academic Press Inc., New York

    Google Scholar 

  33. Ritchie, J. M. 1971. Electrogenic ion pumping in nervous tissue.Curr. Top. Bioenerget. 4:327

    Google Scholar 

  34. Roon, R. J., Levenberg, B. 1970. ATP: Urea amidolyase (ADP) (Candida utilis).In: Methods in Enzymology. H. Tabor and C. W. Tabor, editors. Vol. XVII, p. 317. Metabolism of amino acids and amines, Part A. Academic Press Inc., New York

    Google Scholar 

  35. Saddler, H. D. W. 1970. The membrane potential ofAcetabularia mediterranea.J. Gen. Physiol. 55:802

    PubMed  Google Scholar 

  36. Schoner, W., Beusch, R., Kramer, R. 1968. On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 2. Comparison of nucleotide specificities of Na+- and K+-activated ATPase and Na+-dependent phosphorylation of cell membranes.Europ. J. Biochem. 7:102

    PubMed  Google Scholar 

  37. Skulachev, V. P. 1971. Energy transformations in the respiratory chain.Curr. Top. Bioenerget. 4:127

    Google Scholar 

  38. Slayman, C. L. 1965. Electrical properties ofNeurospora crassa: Effects of external cations on the intracellular potential.J. Gen. Physiol. 49:69

    PubMed  Google Scholar 

  39. Slayman, C. L. 1965. Electrical properties ofNeurospora crassa: Respiration and the intracellular potential.J. Gen. Physiol. 49:93

    PubMed  Google Scholar 

  40. Slayman, C. L. 1970. Movement of ions and electrogenesis in microorganism.Amer. Zoologist 10:377

    Google Scholar 

  41. Slayman, C. L. 1973. Adenine nucleotide levels inNeurospora, as influenced by conditions of growth and by metabolic inhibitors.J. Bacteriol. 114:752

    PubMed  Google Scholar 

  42. Slayman, C. L., Lu, C.Y.-H., Shane, L. 1970. Correlated changes in membrane potential and ATP concentrations inNeurospora.Nature 226:274

    PubMed  Google Scholar 

  43. Slayman, C. L., Slayman, C. W. 1968. Net uptake of potassium inNeurospora: Exchange for sodium and hydrogen ions.J. Gen. Physiol. 52:424

    PubMed  Google Scholar 

  44. Slayman, C. L., Slayman, C. W. 1973. H+-dependent cotransport and the electrogenic pump in the plasma membrane ofNeurospora. Abstracts,73 rd Ann. Meet. Amer. Soc. Microbiol., Item P189

  45. Slayman, C. W., Slayman, C. L. 1970. Potassium transport inNeurospora: Evidence for a multisite carrier at high pH.J. Gen. Physiol. 55:758

    PubMed  Google Scholar 

  46. Slayman, C. W., Tatum, E. L. 1964. Potassium transport inNeurospora. I. Intracellular sodium and potassium concentrations, and cation requirements for growth.Biochim. Biophys. Acta 88:578

    PubMed  Google Scholar 

  47. Slayman, C. W., Tatum, E. L. 1965. Potassium transport inNeurospora. II. Measurement of steady-state potassium fluxes.Biochim. Biophys. Acta 102:149

    PubMed  Google Scholar 

  48. Spanswick, R. M. 1972. Evidence for an electrogenic ion pump inNitella translucens. I. The effects of pH, K+, Na+, light, and temperature on the membrane potential and resistance.Biochim. Biophys. Acta 288:73

    PubMed  Google Scholar 

  49. Strehler, B. L. 1965. Adenosine-5′-triphosphate and creatine phosphate. Determination with luciferase.In: Methods of Enzymatic Analysis. H. U. Bergemeyer, editor. p. 559. Academic Press Inc., New York

    Google Scholar 

  50. Tamai, T., Kagiyama, S. 1968. Studies of cat heart muscle during recovery after prolonged hypothermia. Hyperpolarization of cell membranes and its dependence on the sodium pump with electrogenic characteristics.Circulation Res. 22:423

    PubMed  Google Scholar 

  51. Thomas, R. C. 1969. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium.J. Physiol. 201:495

    PubMed  Google Scholar 

  52. Thomas, R. C. 1972. Electrogenic sodium pump in nerve and muscle cells.Physiol. Rev. 52:563

    PubMed  Google Scholar 

  53. Ullrich, F. 1966. The inhibition of magnesium-activated mitochondrial adenosine triphosphatase by calcium.Biochim. Biophys. Acta 122:298

    PubMed  Google Scholar 

  54. Viotti, A., Bagni, N., Sturani, E., Alberghina, F. A. M. 1971. Magnesium and polyamine levels inNeurospora crassa mycelia.Biochim. Biophys. Acta 244:329

    PubMed  Google Scholar 

  55. Vogel, H. J. 1956. A convenient growth medium forNeurospora (Medium N).Microbiol. Gen. Bull. 13:42

    Google Scholar 

  56. Weibull, C., Greenawalt, J. W., Löw, H. 1962. The hydrolysis of adenosine triphosphate by all fractions ofBacillus megaterium. I. Localization and general characteristics of the enzymatic activities.J. Biol. Chem. 237:847

    PubMed  Google Scholar 

  57. West, I. C., Mitchell, P. 1973. Stoichiometry of lactose-proton symport across the plasma membrane ofEscherichia coli.Biochem. J. 132:587

    PubMed  Google Scholar 

  58. Zalokar, M. 1959. Enzyme activity and cell differentiation inNeurospora.Amer. J. Bot. 46:555

    Google Scholar 

  59. Zalokar, M. 1959. Growth and differentiation ofNeurospora hyphae.Amer. J. Bot. 46:602

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slayman, C.L., Long, W.S. & Lu, C.Y.H. The relationship between ATP and an electrogenic pump in the plasma membrane ofNeurospora crassa . J. Membrain Biol. 14, 305–338 (1973). https://doi.org/10.1007/BF01868083

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868083

Keywords

Navigation