Skip to main content
Log in

The route of passive ion movement through the epithelium ofNecturus gallbladder

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Electrophysiological experiments were performed onNecturus gallbladder to determine whether the main route of passive ion flow was via the cells or via a paracellular shunt path. In the first approach the following values were determined: the transepithelial resistance, the ratio of the voltage deflections across the luminal and basal cell membrane during transepithelial current flow, and the voltage spread within the epithelial cell layer during intracellular application of current pulses. From these data the luminal and basal cell membrane resistances were calculated to be 4,500 and 2,900 Ωcm2, respectively, whereas the transepithelial resistance was only 310 Ωcm2, indicating that approximately 96% of the transepithelial current bypassed the cells. This result was confirmed in a second approach, in which the intracellular voltage deflections were found to remain approximately constant, when the current pulses were passed from a cell into the interstitial compartment with the luminal compartment being empty or when they were passed from the cell into both external compartments simultaneously. In the third approach current was passed through the epithelium and a voltage-scanning microelectrode was moved across the surface of the epithelium to explore the induced electrical field. Significant distortions of the field were observed in the immediate vicinity of the cell borders. This result indicated that the paracellular shunt, which carries the main part of the transepithelial current, leads through the terminal bars and that the terminal bars or “tight” junctions arenot tight for transepithelial movement of small ions in gallbladder epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. A. 1965. Handbook of Mathematical Functions. National Bureau of Standards, Washington, D. C. Fourth printing. p. 486.

    Google Scholar 

  2. Adrian, R. H. 1956. The effect of internal and external potassium concentration on the membrane potential of frog muscle.J. Physiol. 133:631.

    Google Scholar 

  3. Baldamus, C. A., Frömter, E., Lüer, K., Radtke, H. W., Rumrich, G., Sauer, F., Ullrich, K. J. 1972. Transport parameters for sodium, chloride and bicarbonate in proximal tubules of the rat kidney. (In preparation).

  4. Barr, L., Dewey, M. M., Berger, W. 1965. Propagation of action potentials and the structure of the nexus in cardiac muscle.J. Gen. Physiol. 48:797

    Google Scholar 

  5. Barry, P. H., Diamond, J. M., Wright, E. M. 1971. The mechanism of cation permeation in rabbit gallbladder. Dilution potentials and biionic potentials.J. Membrane Biol. 4:358.

    Google Scholar 

  6. Bentzel, C. J., Parsa, B., Hare, D. K. 1969. Osmotic flow across proximal tubule ofNecturus: Correlation of physiologic and anatomic studies.Amer. J. Physiol. 217:570.

    Google Scholar 

  7. Blum, A. L., Hirschowitz, B. I., Helander, H. F., Sachs, G. 1971. Electrical properties of isolated cells ofNecturus gastric mucosa.Biochim. Biophys. Acta 241:261.

    Google Scholar 

  8. Boulpaep, E. 1971. Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular pathways.In: Electrophysiology of Epithelia. G. Giebisch, editor. p. 91. K. Schattauer Verlag, Stuttgart.

    Google Scholar 

  9. Bullivant, S., Loewenstein, W. R. 1968. Structure of coupled and uncoupled cell junctions.J. Cell Biol. 37:621.

    Google Scholar 

  10. Clarkson, T. W. 1967. The transport of salt and water across isolated rat ileum. Evidence for at least two distinct pathways.J. Gen. Physiol. 50:695.

    Google Scholar 

  11. Curran, P. F., MacIntosh, J. R. 1962. A model system for biological water transport.Nature 193:347.

    Google Scholar 

  12. Dewey, M. M., Barr, L. 1964. A study of the structure and distribution of the nexus.J. Cell. Biol. 23:553.

    Google Scholar 

  13. Diamond, J. M. 1962. The mechanism of solute transport by the gallbladder.J. Physiol. 161:474.

    Google Scholar 

  14. Diamond, J. M., Bossert, W. H. 1967. Standing-gradient osmotic flow. A mechanism of coupling of water and solute transport in epithelia.J. Gen. Physiol. 50:2061.

    Google Scholar 

  15. Dreifuss, J. J., Girardier, L., Forssmann, W. G. 1966. Étude de la propagation de l'excitation dans le ventricule de rat au moyen de solutions hypertoniques.Pflüg. Arch. Ges. Physiol. 292:13.

    Google Scholar 

  16. Eisenberg, R. S., Johnson, E. A. 1970. Three-dimensional electrical field problems in physiology.Prog. Biophys. Mol. Biol. 20:1.

    Google Scholar 

  17. Farquhar, M. G., Palade, G. E. 1963. Junctional complexes in various epithelia.J. Cell. Biol. 17:375.

    Google Scholar 

  18. Fordtran, J. S., Rector, F. C., Jr., Carter, N. W. 1968. The mechanism of sodium absorption in the human small intestine.J. Clin. Invest. 47:884.

    Google Scholar 

  19. Frömter, E., Diamond, J. M. 1972. Route of passive ion permeation in epithelia.Nature New Biol. 235:9.

    Google Scholar 

  20. Frömter, E., Müller, C. W., Wick, T. 1971. Permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods.In: Electrophysiology of Epithelia. G. Giebisch, editor. p. 119. K. Schattauer Verlag, Stuttgart.

    Google Scholar 

  21. Giebisch, G. 1958. Electrical potential measurements on single nephrons ofNecturus.J. Cell Comp. Physiol. 51:222.

    Google Scholar 

  22. Goodenough, D. A., Revel, J. P. 1970. A fine structural analysis of intercellular junctions in the mouse liver.J. Cell Biol. 45:272.

    Google Scholar 

  23. Hoshi, T., Sakai, F. 1967. A comparison of the electrical resistances of the surface cell membrane and cellular wall in the proximal tubule of theNewt kidney.Jap. J. Physiol. 17:627.

    Google Scholar 

  24. Loewenstein, W. R. 1966. Permeability of membrane junctions.Ann. N.Y. Acad. Sci. 137, Pt. 2: 441.

    Google Scholar 

  25. Loewenstein, W. R., Kanno, Y. 1964. Studies on an epithelial (gland) cell junction.J. Cell. Biol. 22:565.

    Google Scholar 

  26. Loewenstein, W. R., Socolar, S. J., Higashino, S., Kanno, Y., Davidson, N. 1965. Intercellular communication: renal, urinary bladder, sensory, and salivary gland cells.Science 149:295.

    Google Scholar 

  27. Lundberg, A. 1957. The mechanism of establishment of secretory potentials in sublingual gland cells.Acta Physiol. Scand. 40:35.

    Google Scholar 

  28. Maunsbach, A. 1966. Absorption of ferritin by rat kidney proximal tubule cells.J. Ultrastruct. Res. 16:1.

    Google Scholar 

  29. McNutt, N. S., Weinstein, R. S. 1970. The ultrastructure of theNexus.J. Cell Biol. 47:666.

    Google Scholar 

  30. Nastuk, W. L., Hodgkin, A. L. 1950. Electrical activity of single muscle fibers.J. Cell Comp. Physiol. 35:39.

    Google Scholar 

  31. Noble, D. 1962. The voltage and time dependence of the cardiac membrane conductance.Biophys. J. 2:381.

    Google Scholar 

  32. Patlak, C. S., Goldstein, D. A., Hoffman, J. F. The flow of solute across a two-membrane system.J. Theoret. Biol. 5:426.

  33. Sakai, F., Hoshi, T., Haga, M., Enomoto, Y. 1961. Membranpotential der Nierentubuli des Triturus Pyrrhogaster.Jap. J. Pharmacol. 11:65.

    Google Scholar 

  34. Shiba, H. 1971. Haevisides “Bessel cable” as an electric model for flat simple epithelial cells with low resistive junctional membranes.J. Theoret. Biol. 30:59.

    Google Scholar 

  35. Silverblatt, F. S., Bulger, R. E. 1970. Gap junctions occur in vertebrate renal proximal tubule cells.J. Cell Biol. 47:513.

    Google Scholar 

  36. Smulders, A., Tormey, J. M., Wright, E. M. 1972. The effect of osmotically induced water flows on the permeability and ultrastructure of the rabbit gallbladder.J. Membrane Biol. 7:164.

    Google Scholar 

  37. Staehelin, L. A., Mukherjee, T. M., Williams, A. W. 1969. Freeze etch appearance of the tight junctions in the epithelium of small and large intestine of mice.Protoplasma 67:165.

    Google Scholar 

  38. Thoenes, W., Langer, K. H. 1969. Die Endozytosephase der Eiweißresorption im proximalen Nierentubulus.Virchows Arch. Abt. B Zellpath. 2:361.

    Google Scholar 

  39. Tormey, J. M., Diamond, J. M. 1967. The ultrastructural route of fluid transport in rabbit gallbladder.J. Gen. Physiol. 50:2031.

    Google Scholar 

  40. Trelstad, R. L., Revel, J. P., Hay, E. D. 1966. Tight junctions between cells in the early chick embryo as visualized with the electronmicroscope.J. Cell Biol. 31:C6.

    Google Scholar 

  41. Ussing, H. H., Windhager, E. E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484.

    Google Scholar 

  42. Wedner, H. J., Diamond, J. M. 1969. Contributions of unstirred-layer effects to apparent electrokinetic phenomena in gallbladder.J. Membrane Biol. 1:92.

    Google Scholar 

  43. Wick, T., Frömter, E. 1967. Das Zellpotential des proximalen Konvoluts der Rattenniere in Abhängigkeit von der peritubulären Ionenkonzentration.Pflüg. Arch. Ges. Physiol. 294:R17.

    Google Scholar 

  44. Windhager, E. E., Boulpaep, E. L., Giebisch, G. 1967. Electrophysiological studies on single nephrons.Proc. 3rd. Int. Congr. Nephrol., Washington (1966), vol. 1, p. 35. Karger Basel, New York.

    Google Scholar 

  45. Woodburry, J. W., Crill, W. E. 1961. On the problem of impulse conduction in the atrium.In: Nervous Inhibition, E. Florey. editor. p. 124. Pergamon Press, N.Y.

    Google Scholar 

  46. Wright, E. M., Barry, P. H., Diamond, J. M. 1971. The mechanism of cation permeation in rabbit gallbladder. Conductances, the current-voltage relation, the concentration dependence of anion-cation discrimination, and the calcium competition effect.J. Membrane Biol. 4:331.

    Google Scholar 

  47. Wright, E. M., Diamond, J. M. 1968. Effects of pH and polyvalent cations on the selective permeability of gallbladder epithelium to monovalent ions.Biochim. Biophys. Acta 163:57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frömter, E. The route of passive ion movement through the epithelium ofNecturus gallbladder. J. Membrain Biol. 8, 259–301 (1972). https://doi.org/10.1007/BF01868106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868106

Keywords

Navigation