Skip to main content
Log in

The mechanism of electrical breakdown in the membranes ofValonia utricularis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The dielectric breakdown in the membranes of cells ofValonia utricularis was investigated using intracellular electrodes and 500-μsec current pulses. Electrical breakdown, which occurs when the membrane potential reaches a well-defined critical value, is not associated with global damage to the cell or its membranes (the membrane reseals in <5 sec). It was thus possible to investigate the effect of temperature on dielectric breakdown in single cells. It was found that the critical potential for breakdown was strongly dependent on temperature, decreasing from ∼1000 mV at 4°C to ∼640 mV at 30°C. The decrease in the breakdown potential with increasing temperature and the very short rise-time of the breakdown current (∼1 μsec) suggests that the Wien field dissociation does not play a major role in the breakdown process. It is shown that the nonlinearI–V characteristics observed at different temperatures can be accurately accounted for with no adjustable parameters, by considerations of the mechanical compression of the membrane due to stresses induced by the electric field. Electrical breakdown on this scheme results from an electromechanical instability in the membrane. On this basis the present results indicate that the elastic modulus of the region of the membrane where breakdown occurs, decreases by a factor of 2 with increasing temperature from 4 to 30°C. On the assumption of a thickness of 4.0 nm and a dielectric constant of 5, the elastic modulus is estimated to have a value of 5×106 Nm−2 at 20°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coster, H. G. L. 1969. The role of pH in the punch-through effect in the electrical characteristics ofChara australis.Aust. J. Biol. Sci. 22:365

    Google Scholar 

  2. Coster, H. G. L. 1973. The double fixed charge membrane model: An hypothesis concerning the structure and morphogenesis of cell membranes.Biophys. J. 13:1119

    PubMed  Google Scholar 

  3. Coster, H. G. L., Smith, J. R. 1974. The effect of pH on the low frequency capacitance of the membranes ofChara corallina.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. Springer-Verlag, Heidelberg

    Google Scholar 

  4. Coster, H. G. L., Smith, J. R. 1974. The molecular organization of bimolecular lipid membranes: A study of the low frequency Maxwell-Wagner impedance dispersion.Biochim. Biophys. Acta 375:151

    Google Scholar 

  5. Coster, H. G. L., Zimmermann, U. 1974. Direct demonstration of dielectric breakdown of the membranes ofValonia utricularis. Z. Naturf. (In press)

  6. Coster, H. G. L., Zimmermann, U. 1974. Dielectric breakdown in the membranes ofValonia utricularis The role of energy dissipation.Biochim. Biophys. Acta (In press)

  7. Crowley, J. M. 1973. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability.Biophys. J. 13:711

    PubMed  Google Scholar 

  8. Huang, G., Wheeldon, L., Thompson, T. E. 1964. The properties of lipid bilayer membranes separating two aqueous phases: Formation of a membrane of simple composition.J. Mol. Biol. 8:148

    Google Scholar 

  9. Katchalsky, A., Kedem, O., Klibansky, C., Vries, A. 1960.In: Flow properties of blood and other biological systems. A. L. Copely and G. Strainsby, editors. p. 129. Pergamon Press, New York

    Google Scholar 

  10. Läuger, P. 1973. Ion transport through pores: A rate theory analysis.Biochim. Biophys. Acta 311:423

    PubMed  Google Scholar 

  11. Neumann, E., Rosenheck, K. 1973. Potential difference across vesicular membranes.J. Membrane Biol. 14:194

    Google Scholar 

  12. Neumcke, B., Läuger, P. 1969. Non linear effects in lipid bilayer membranes. II. Integration of the generalised Nernst-Planck equations.Biophys. J. 9:1160

    PubMed  Google Scholar 

  13. Neumcke, B., Walz, D., Läuger, P. 1970. Non linear electrical effects in lipid bilayer membranes. III. The dissociation field effect.Biophys. J. 10:172

    PubMed  Google Scholar 

  14. Onsager, L. 1934. Deviations from Ohm's law in weak electrolytes.J. Chem. Phys. 2:599

    Google Scholar 

  15. Rand, R. P., Burton, A. C. 1964. Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure.Biophys. J. 4:115

    Google Scholar 

  16. Requena, J., Haydon, D. A., Hladky, S. B. 1975. Lenses and the compression of black lipid membranes by an electric field.Biophys. J. 15:77

    PubMed  Google Scholar 

  17. Sale, A. J. H., Hamilton, W. A. 1967. Effects of high electric fields on microorganisms. I. Killing of bacteria, and yeasts.Biochim. Biophys. Acta 148:781

    Google Scholar 

  18. Sharbaugh, A. B., Watson, P. K. 1962. Conduction and breakdown in liquid dielectrics.Prog. Dielectrics 4:201

    Google Scholar 

  19. Singer, S. J., Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes.Science 175:720

    PubMed  Google Scholar 

  20. Tien, H. T., Diana, A. L. 1967. Black lipid membranes in aqueous media: The effect of salts on electrical properties.J. Colloid Interface Sci. 24:287

    PubMed  Google Scholar 

  21. White, S. H. 1970. A study of lipid membrane stability using precise measurement of specific capacitance.Biophys. J. 10:1127

    PubMed  Google Scholar 

  22. White, S. H. 1974. Comments on “Electrical breakdown of bimolecular lipid membranes as an electromechanical instability”.Biophys. J. 14:155

    PubMed  Google Scholar 

  23. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Reversibler dielektrischer, Durchbruch von Zellmembranen in elektrostatischen Feldern.Z. Naturf. 294:304

    Google Scholar 

  24. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown in cell membranes.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. Springer-Verlag, Heidelberg

    Google Scholar 

  25. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown in cell membranes.Biophys. J. 14:881

    PubMed  Google Scholar 

  26. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Preparation of erythrocyte ghosts by dielectric breakdown of the cell membrane.Biochim. Biophys. Acta (In press)

  27. Zimmermann, U., Schultz, J., Pilwat, G. 1973. Transcellular ion flow inEscherichia coli B and electrical sizing of bacteria.Biophys. J. 13:1005

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coster, H.G.L., Zimmermann, U. The mechanism of electrical breakdown in the membranes ofValonia utricularis . J. Membrain Biol. 22, 73–90 (1975). https://doi.org/10.1007/BF01868164

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868164

Keywords

Navigation