Skip to main content
Log in

Effect of temperature on nonelectrolyte permeation across the toad urinary bladder

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The permeability of the toad urinary bladder to 22 nonelectrolytes was obtained from measurements of radioactive tracer fluxes. The permeability coefficients (P's), after suitable corrections for unstirred layers, were proportional to the olive oil/water partition coefficients for the majority of the molecules (P α Koil 1.3). In the absence of chain branching, inductive effects, and intramolecular hydrogen bonding effects, a hydroxyl group reducedP an average 500-fold and a methylene group increasedP an average four fold. Branched chain solutes were less permeable than their straight chain isomers, and small solutes, polarand nonpolar, exhibited higher rates of permeation than expected from the relationship betweenP and Koil. (Over the molecular size range 18–175 cc/moleP α(Molecular Volume)−2.7.) The high rates of permeation of small molecules are consistent with diffusion through a highly organized lipid structure. Large polar solutes, e.g., sucrose, appear to pass across the epithelium via an extracellular shunt pathway. The apparent activation energies (E a ) for the permeation of 16 select molecules were obtained from permeability measurements over the temperature range 2–32°C. Linear Arrhenius plots (i. e., logP/T −1) were obtained for all molecules after unstirred layer corrections. In the absence of these corrections “phase transitions” were seen for molecules with very highP's (P>300×10−7 cm/sec), but these are simply due to diffusion limited permeation.E a increased by 2.5–3.6 kcals/mole with the introduction of each additional methylene group into a molecule, and decreased by up to 9 kcals/mole for the addition of a hydroxyl group. Qualitatively similar results were obtained in preliminary studies of olive oil/water partition coefficients. Arrhenius plots of the toad bladder conductance over the temperature range 2–32°C yield apparent activation energies of 4–5 kcals/mole which is identical to that found previously for “leaky” epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken, A., Barrer, R. M. 1955. Transport and solubility of isomeric paraffins in rubber.Trans. Faraday Soc. 51:116

    Article  Google Scholar 

  • Barrer, R. M., Skirrow, G. J. 1948. Transport and equilibrium phenomena in gas-elastomer systems. I. Kinetic phenomena.J. Polym. Sic. 3:549

    Google Scholar 

  • Barry, P. H., Diamond, J. M., Wright, E. M. 1971. The mechanism of cation permeation in rabbit gallbladder.J. Membrane Biol. 4:358

    Google Scholar 

  • Bindslev, N., Tormey, J. McD., Pietras, R. J., Wright, E. M. 1974. Electrically and osmotically induced changes in permeability and structure of toad urinary bladder.Biochim. Biophys. Acta 332:286

    Google Scholar 

  • Bindslev, N., Wright, E. M. 1974. Anomalous permeation of small lipophilic solutes across toad urinary bladder.J. Physiol. (London)242:120P

    Google Scholar 

  • Bindslev, N., Wright, E. M. 1975. Apparent viscosity of toad bladder. Abstr. P351. 5th Internat. Congress, Copenhagen

  • Cohen, B. E. 1975a. The permeability of liposomes to nonelectrolytes. I. Activation energies for permeation.J. Membrane Biol. 20:205

    Google Scholar 

  • Cohen, B. E. 1975b. The permeability of liposomes to nonelectrolytes. II. The effect of Nystatin and Gramicidin A.J. Membrane Biol. 20:235

    Google Scholar 

  • Cohen, B. E., Bangham, A. D. 1972. Diffusion of small non-electrolytes across liposome membranes.Nature (London)236:173

    Google Scholar 

  • Collander, R. 1954. The permeability ofNitella cells to non-electrolytes.Physiol. Plant. 7:420

    Google Scholar 

  • Diamond, J. M., Katz, Y. 1974. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water.J. Membrane Biol. 17:121

    Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969a. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:582

    Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969b. Molecular forces governing non-electrolyte permeation through cell membranes.Proc. R. Soc. London B. 172:273

    Google Scholar 

  • Dix, J. A., Diamond, J. A., Kivelson, D. 1974. Translational diffusion coefficient and partition coefficient of a spin-labeled solute in lecithin bilayer membranes.Proc. Nat. Acad. Sci. USA 71:474

    PubMed  Google Scholar 

  • Galey, W. R., Owen, J. D., Solomon, A. K. 1973. Temperature dependence of nonelectrolyte permeation across red cell membranes.J. Gen. Physiol. 61:727

    PubMed  Google Scholar 

  • Grigeria, J. R., Cereijido, M. 1971. The state of water in the outer barrier of the isolated frog skin.J. Membrane Biol. 4:148

    Google Scholar 

  • Hays, R. M., Franki, N., Soberman, R. 1971. Activation energy for water diffusion across toad bladder; evidence against the pore enlargement hypothesis.J. Clin. Invest. 50:1016

    PubMed  Google Scholar 

  • Hays, R. M., Leaf, A. 1962. Studies on the movement of water through the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:905

    PubMed  Google Scholar 

  • Horowitz, S. B., Fenichel, I. R. 1964. Solute diffusional specificity in hydrogen bonding systems.J. Phys. Chem. 68:3378

    Google Scholar 

  • House, C. R. 1974. Water Transport in Cells and Tissues. Edward Arnold Ltd., London

    Google Scholar 

  • Johnson, S. M., Bangham, A. D. 1969. The action of anesthetics on phospholipid membranes.Biochim. Biophys. Acta 193:92

    PubMed  Google Scholar 

  • Katz, Y., Diamond, J. M. 1974a. A method for measuring nonelectrolyte partition coefficients between liposomes and water.J. Membrane Biol. 17:69

    Article  Google Scholar 

  • Katz, Y., Diamond, J. M. 1974b. Thermodynamic constants for nonelectrolyte partition between dimyristoyl lecithin and water.J. Membrane Biol. 17:101

    Article  Google Scholar 

  • Klein, R. A., Moore, M. J., Smith, M. W. 1971. Selective diffusion of neutral amino acids across lipid bilayers.Biochim. Biophys. Acta 233:420

    PubMed  Google Scholar 

  • Levine, S., Franki, N., Hays, R. M. 1973. A saturable vasopressin-sensitive carrier for urea and acetamide in the toad bladder epithelial cell.J. Clin. Invest. 52:2083

    PubMed  Google Scholar 

  • Lieb, W. R., Stein, W. D. 1969. Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes.Nature (London)224:240

    Google Scholar 

  • Lieb, W. R., Stein, W. D. 1971. The molecular basis of simple diffusion within biological membranes.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzellar, editors. Vol. 2. Academic Press, New York, London

    Google Scholar 

  • Meares, P. 1965. Polymers: Structure and Bulk Properties. D. van Nostrand Co. Ltd., London, Toronto, New York, Princeton

    Google Scholar 

  • Pietras, R. J., Wright, E. M. 1975. The membrane action of antidiuretic hormone (ADH) on toad urinary bladder.J. Membrane Biol. 22:107

    Google Scholar 

  • Poznansky, M. J., Tong, S., Solomon, A. K. 1975. Permeability of spherical lipid bilayers to a homologous series of short-chain monoamides.Fed. Proc. 34:326

    Google Scholar 

  • Price, H. D., Thompson, T. E. 1969. Properties of liquid bilayer membranes separating two aqueous phases; temperature dependence of water permeability.J. Mol. Biol. 41:443

    PubMed  Google Scholar 

  • Redwood, W. R., Haydon, D. A. 1969. Influence of temperature and membrane composition on the water permeability of lipid bilayers.J. Theor. Biol. 22:1

    PubMed  Google Scholar 

  • Renkin, E. M. 1954. Filtration, diffusion and molecular sieving through porous cellulose membranes.J. Gen. Physiol. 38:225

    PubMed  Google Scholar 

  • Reuss, L., Finn, A. L. 1974. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances.J. Gen. Physiol. 64:1

    PubMed  Google Scholar 

  • Rudy, B., Gitler, C. 1972. Microviscosity of the cell membrane.Biochim. Biophys. Acta 288:231

    PubMed  Google Scholar 

  • Sha'afi, R. I., Gary-Bobo, C. M., Solomon, A. K. 1971. Permeability of red cell membranes to small hydrophilic and lipophilic solutes.J. Gen. Physiol. 58:238

    PubMed  Google Scholar 

  • Soll, A. H. 1967. A new approach to molecular configuration applied to aqueous pore transport.J. Gen. Physiol. 50:2565

    PubMed  Google Scholar 

  • Solomon, A. K. 1974. Apparent viscosity of human red cell membranes.Biochim. Biophys. Acta 373:145

    PubMed  Google Scholar 

  • Smulders, A. P., Wright, E. M. 1971. The magnitude of nonelectrolyte selectivity in the gallbladder epithelium.J. Membrane Biol. 5:297

    Google Scholar 

  • Stein, W. D. 1967. The Movement of Molecules across Cell Membranes. Academic Press Inc., London, New York

    Google Scholar 

  • Stein, W. D., Nir, S. 1971. On the mass dependence of diffusion within biological membranes and polymers.J. Membrane Biol. 5:246

    Google Scholar 

  • Taupin, C., Dvolaitzky, M., Sauterey, C. 1975. Osmotic pressure induced pores in phospholipid vesicles.Biochemistry 14:4771

    PubMed  Google Scholar 

  • van Os, C. H., de Jong, M. D., Slegers, J. F. G. 1974. Dimensions of polar pathways through rabbit gallbladder epithelium.J. Membrane Biol. 15:363

    Google Scholar 

  • van Os, C. H., Slegers, J. F. G. 1973. Path of osmotic water flow through rabbit gallbladder epithelium.Biochim. Biophys. Acta 291:197

    PubMed  Google Scholar 

  • Wright, E. M., Barry, P. H., Diamond, J. M. 1971. The mechanism of cation permeation in rabbit gallbladder.J. Membrane Biol. 4:331

    Google Scholar 

  • Wright, E. M., Bindslev, N. 1976. A thermodynamic analysis of nonelectrolyte permeation across the toad urinary bladder.J. Membrane Biol. 29:

  • Wright, E. M., Diamond, J. M. 1969. Patterns of non-electrolyte permeability.Proc. R. Soc. London. B. 172:203

    Google Scholar 

  • Wright, E. M., Pietras, R. J. 1974. Routes of nonelectrolyte permeation across epithelial membranes.J. Membrane Biol. 17:293

    Google Scholar 

  • Wright, E. M., Smulders, A. P., Tormey, J. McD. 1972. The role of the lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gallbladder.J. Membrane Biol. 7:198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bindslev, N., Wright, E.M. Effect of temperature on nonelectrolyte permeation across the toad urinary bladder. J. Membrain Biol. 29, 265–288 (1976). https://doi.org/10.1007/BF01868966

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868966

Keywords

Navigation