Skip to main content
Log in

Effects of calcium, lanthanum, and temperature on the fluidity of spin-labeled human platelets

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Previous platelet studies have shown that calcium plays important roles in stimulus-secretion coupling, aggregation, and other membrane-associated functions. In addition, lanthanum induces platelet aggregation and the platelet release reaction and also influences platelet responsiveness to various stimuli. The spin-label results presented here suggest that one mechanism through which calcium and lanthanum mediate their effects on platelet functions may be by decreasing the lipid fluidity of the surface membrane.

The structure of platelet membrane lipids was examined with the spin-label method. Washed human platelets were labeled with the 5-, 12- and 16-nitroxide stearic acid spin probes. Order parameters which measure the fluidity of the lipid environment of the incorporated probe may be calculated from the electron spin resonance (ESR) spectra of 5-nitroxide stearate [I(12,3)]-labeled cells. Evidence is presented which indicates that these spectra principally reflect properties of the platelet surface membrane lipids. The membrane fluidity increased with temperature for the range 17 to 37 °C. Either calcium or lanthanum additions to intact cells increased the rigidity of the platelet membranes at 37 °C, although the La3+ effect was larger and occurred at lower concentrations than that of Ca2+. For example, addition of 1mm La3+ or 4mm Ca2+ increased the order parameter of I(12,3)-labeled platelets by 4.3±1.7% or 2.1±0.5%. Preliminary studies conducted on purified platelet plasma membranes labeled with I(12,3) indicated that 1mm LaCl3 or 4mm CaCl2 additions similarly decreased the lipid fluidity at 37 °C. The above cation-induced effects on the fluidity of whole platelets were reversed by the use of the divalent cation-chelating agent ethylene glycol-bis-(β-aminoethyl ether)-N,N′-tetra-acetic acid (EGTA). Lastly, lanthanum (0.2–1mm) caused rapid aggregation of platelets which were suspended in a 50-mm Tris buffer pH 7.4 that did not contain adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amatruda, J.M., Finch, E.D. 1979. Modulation of hexose uptake and insulin action by cell membrane fluidity.J. Biol. Chem. 254:2619

    Google Scholar 

  • Bales, B.L., Leon, V. 1978. Magnetic resonance studies of eukaryotic cells. III. Spin-labelled fatty acids in the plasma membrane.Biochim. Biophys. Acta 509:90

    Google Scholar 

  • Barber, A.J., Jamieson, G.A. 1970. Isolation and characterization of plasma membranes from human blood platelets.J. Biol. Chem. 245:6357

    Google Scholar 

  • Barratt, M.D., Laggner, P. 1974. The pH dependence of ESR spectra from nitroxide probes in lecithin dispersions.Biochim. Biophys. Acta 363:127

    Google Scholar 

  • Bashford, C.L., Morgan, C.G., Radda, G.K. 1976. Measurement and interpretation of fluorescence polarizations in phospholipid dispersions.Biochim. Biophys. Acta 426:157

    Google Scholar 

  • Breddin, K., Krzywanek, H.J., Ziemen, J., Bauer, H., Grün, H. 1977. Enhanced platelet aggregation as a risk factor for progress and complications of vascular diseases. New findings with a platelet aggregation test (PAT III) and on the dependence of different aggregation tests on morphologic platelet changes.In: Platelet Aggregation in the Pathogenesis of Cerebrovascular Disorders. A. Agnoli and C. Fazzio, editors. p. 44. Springer-Verlag, New York

    Google Scholar 

  • Breton, J., Viret, J. Leterrier, F. 1977. Calcium and chlorpromazine interactions in rat synaptic plasma membranes. A spinlabel and fluorescence probe study.Arch. Biochim. Biophys. 179:625

    Google Scholar 

  • Brivio-Haugland, R.P., Louis, S.L., Musch, K., Waldeck, N., Williams, M.A. 1976. Liver plasma membranes from essential fatty acid-deficient rats. Isolation, fatty acid composition, and activities of 5′-nucleotidase, ATPase and adenylate cyclase.Biochim. Biophys. Acta 433:150

    Google Scholar 

  • Butler, K.W., Dugas, H., Smith, I.C.P., Schneider, H. 1970. Cation-induced organization changes in a lipid bilayer model membrane.Biochem. Biophys. Res. Commun. 40:770

    Google Scholar 

  • Butler, K.W., Tattrie, N.H., Smith, I.C.P. 1974. The location of spin probes in two phase mixed lipid systems.Biochem. Biophys. Acta 363:351

    Google Scholar 

  • Butterfield, D.A., Whisnant, C.C., Chesnut, D.B. 1976. On the use of the spin labeling technique in the study of erythrocyte membranes.Biochim. Biophys. Acta 426:697

    Google Scholar 

  • Chambers, D.A., Salzman, E.W., Neri, L.L. 1967. Characterization of “Ecto-ATPase” of human platelets.Arch. Biochem. Biophys. 119:173

    Google Scholar 

  • Cohen, I., De Vries, A. 1973. Platelet contractile regulation in an isometric system.Nature (London) 246:36

    Google Scholar 

  • Colman, R.W., Kuchibhotla, J., Jain, M.K., Murray, R.K. 1977. Phase separation in lecithin bilayers as a predictor of inhibition of blood platelet aggregation by amantadines.Biochim. Biophys. Acta 467:273

    Google Scholar 

  • Cooper, H.A., Mason, R.G., Brinkhous, K.M. 1976. The platelet: Membrane and surface reactions.Annu Rev. Physiol. 38:501

    Google Scholar 

  • Crawford, N., Taylor, D.G. 1977. Biochemical aspects of platelet behavior associated with surface membrane reactivity.Br. Med. Bull. 33:199

    Google Scholar 

  • Cronberg, S., Caen, J.P. 1970. Mg++ and Ca++-induced platelet aggregation and ADP.Thromb. Diath. Haemorrh. 24:432

    Google Scholar 

  • Dipple, H., Houslay, M.D. 1978. The activity of glucagon-stimulated adenylate cyclase from rat liver plasma membranes is modulated by the fluidity of its lipid environment.Biochem. J. 174:179

    Google Scholar 

  • Dodge, J.T., Mitchell, C., Hanahan, D.J. 1963. The preparation and chemical characterization of hemoglobin-free ghosts of human erythrocytes.Arch. Biochem. Biophys. 100:119

    Google Scholar 

  • Dodge, J.T., Phillips, G.B. 1967. Composition of phospholipids and of phospholipid fatty acid and aldehydes in human red cells.J. Lipid Res. 8:667

    Google Scholar 

  • Ehrström, M., Eriksson, L.E., Israelachvili, J., Ehrenberg, A. 1973. The effects of some cations and anions on spin labelled cytoplasmic membranes ofBacillus subtilis.Biochem. Biophys. Res. Commun. 55:396

    Google Scholar 

  • Evans, W.H. 1970. Fractionation of liver plasma membranes prepared by zonal centrifugation.Biochem. J. 116:833

    Google Scholar 

  • Feldman, D.A., Weinhold, P.A. 1977. Calcium binding properties of rat heart plasma membrane and inhibition by structural analogues of dl-propranolol.Biochem. Pharmacol. 26:2283

    Google Scholar 

  • Gaffney, B.J. 1975. Spin-label measurements in membranes.Methods Enzymol. 32:161

    Google Scholar 

  • Gaffney, B.J. 1975. Fatty acid chain flexibility in the membranes of normal and transformed fibroblasts.Proc. Nat. Acad. Sci. USA 72:664

    Google Scholar 

  • Gordon, L.M., Sauerheber, R.D. 1977. Studies on spin-labelled egg lecithin dispersions.Biochim. Biophys. Acta 466:34

    Google Scholar 

  • Gordon, L.M., Sauerheber, R.D., Esgate, J.A. 1978. Spin label studies on rat liver and heart plasma membranes: Effects of temperature, calcium and lanthanum on membrane fluidity.J. Supramol. Struct. 9:299

    Google Scholar 

  • Grinnel, F. 1978. Cellular adhesiveness and extracellular substrata.Int. Rev. Cytol. 53:65

    Google Scholar 

  • Grisham, C.M., Barnett, R.E. 1973. The role of lipid phase transitions in the regulation of the (Na++K+)-ATPase.Biochemistry 12:2635

    Google Scholar 

  • Hartmann, W., Galla, H.-J., Sackmann, E. 1977. Direct evidence of charge-induced lipid domain structure in model membranes.FEBS Lett. 78:169

    Google Scholar 

  • Haslam, R.J. 1975. Role of cyclic nucleotides in platelet function.In: Biochemistry and Pharmacology of Platelets. Ciba Foundation Symposium 35. K. Elliot and J. Knight, editors. p. 121. Elsevier, Amsterdam

    Google Scholar 

  • Hellem, A.J. 1960. The adhesiveness of human blood platelets in vitro.Scand. J. Clin. Lab. Invest. 12 (Suppl. 51):1

    Google Scholar 

  • Hepp, K.D., Edel, R., Wieland, O. 1970. Hormone action on liver adenylate cyclase activity. The effects of glucagon and fluoride on a particulate preparation from rat and mouse liver.Eur. J. Biochem. 17:171

    Google Scholar 

  • Heptinstall, S. 1976. The use of a chelating ion-exchange resin to evaluate the effects of the extracellular calcium concentration on adenosine diphosphate induced aggregation of human blood platelets.Thromb. Haemostasis Stuttg. 36:208

    Google Scholar 

  • Hoak, J.C., Spector, A.A., Fry, G.L., Barnes, B.C. 1972. Localization of free fatty acids taken up by human platelets.Blood 40:16

    Google Scholar 

  • Houslay, M.D., Hesketh, T.R., Smith, G.A., Warren, G.B., Metcalfe, J.C. 1976a. The lipid environment of the glucagon receptor regulates adenylate cyclase activity.Biochim. Biophys. Acta 436:495

    Google Scholar 

  • Houslay, M.D., Johannsson, A., Smith, G.A., Hesketh, T.R., Warren, G.B., Metcalfe, J.C. 1976b. On the coupling of the glucagon receptor to adenylate cyclase.Nobel Found Symp. 34:331

    Google Scholar 

  • Hubbell, W.L., McConnell, H.M. 1971. Molecular motion in spin-labelled phospholipids and membranes.J. Am. Chem. Soc. 93:314

    Google Scholar 

  • Jain, M.K. 1975. Role of cholesterol in biomembranes and related systems.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 6, p. 1. Academic Press, New York

    Google Scholar 

  • Jain, M.K., White, H.B. 1977. Long-range order in biomembranes.Adv. Lipid Res. 15:1

    Google Scholar 

  • Jost, P.C., Griffith, O.H., Capaldi, R.A., Vanderkooi, G. 1970. Evidence for boundary lipid in membranes.Proc. Nat. Acad. Sci. USA 70:480

    Google Scholar 

  • Kahn, C.R. 1976. Membrane receptors for hormones and neurotransmitters.J. Cell Biol. 70:261

    Google Scholar 

  • Kandutsch, A.A., Chen, H.W., Heiniger, H. 1978. Biological activity in some oxygenated sterols.Science 201:498

    Google Scholar 

  • Kaplan, J., Canonico, P.G., Caspary, W.J. 1973. ESR studies of spin-labelled mammalian cells by detection of surface membrane signals.Proc. Nat. Acad. Sci. USA 70:66

    Google Scholar 

  • Katlove, H.E., Alexander, B. 1971. The effect of cold on platelets. I. Cold-induced platelet aggregation.Blood 38:39

    Google Scholar 

  • Keith, A.D., Sharnoff, M., Cohn, G. 1973. A summary and evaluation of spin labels used as probes for biological membrane structure.Biochim. Biophys. Acta 300:379

    Google Scholar 

  • Kilpatrick, S.J. 1977.In: Statistical Principles in Health Care Information. p. 1. University Park Press, Baltimore

    Google Scholar 

  • Kimelberg, H.K. 1977. The influence of membrane fluidity on the activity of membrane-bound enzymes.In: Cell Surface Reviews. G. Poste and G.L. Nicolson, editors. Vol. 3, p. 205. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Klein, I., Moore, L., Pastan, I. 1978. Effect of liposomes containing cholesterol on adenylate cyclase activity of cultured mammalian fibroblasts.Biochim. Biophys. Acta 506:42

    Google Scholar 

  • Lacko, L., Wittke, B., Geck, P. 1973. The temperature dependence of the exchange transport of glucose in human erythrocytes.J. Cell. Physiol. 82:213

    Google Scholar 

  • Lee, A.G. 1975. Functional properties of biological membranes: A physical-chemical approach.Prog. Biophys. Mol. Biol. 29:5

    Google Scholar 

  • Lüscher, E.F., Massini, P. 1975. Common pathways for membrane reactivity after stimulation of platelets by different agents.In: Biochemistry and Pharmacology of Platelets. Ciba Foundation Symposium, 35, K. Elliot and J. Knight, editors. p. 5. Elsevier, Amsterdam

    Google Scholar 

  • Manery, J.F. 1966. Effects of Ca ions on membranes.Fed. Proc. 25:1804

    Google Scholar 

  • Marsh, D., Radda, G.K., Ritchie, G.A. 1976. A spin-label study of the chromaffin granule membrane.Eur. J. Biochem. 71:53

    Google Scholar 

  • Massini, P., Lüscher, E.F. 1976. On the significance of the influx of calcium ions into stimulated human blood platelets.Biochim. Biophys. Acta 436:652

    Google Scholar 

  • Mehdi, S.Q., Nussey, S.S., Shindelman, J.E., Kriss, J.P. 1977. The influence of lipid substitution of thyrotropin-receptor interactions in artificial vesicles.Endocrinology 101:1406

    Google Scholar 

  • Mikkelsen, R.B. 1976. Lanthanides as calcium probes in biomembranes.In: Biological Membranes. D. Chapman and D.F.H. Wallach, editors. p. 153. Academic Press, New York

    Google Scholar 

  • Mills, D.C.B. 1975. Initial biochemical responses of platelets to stimulation.In: Biochemistry and Pharmacology of Platelets. Ciba Foundation Symposium 35, K. Elliot and J. Knight, editors. p. 153. Elsevier, Amsterdam

    Google Scholar 

  • Mishra, R.K., Passow, H. 1969. Induction of intracellular ATP synthesis by extracellular ferricyanide in human red blood cells.J. Membrane Biol. 1:214

    Google Scholar 

  • Mustard, J.F., Packham, M.A. 1970. Factors influencing platelet function adhesion, release, and aggregation.Pharm. Rev. 22:97

    Google Scholar 

  • Nachman, R.L. 1975. Binding of adenosine diphosphate by human platelet membrane.In: Biochemistry and Pharmacology of Platelets. Ciba Foundation Symposium 35. K. Elliot and J. Knight, editors. p. 23. Elsevier, Amsterdam

    Google Scholar 

  • Nayler, W.G., Harris, J.P. 1976. Inhibition by La3+ of the Na+, K+-activated, ouabain-sensitive ATPase enzyme.J. Mol. Cell. Cardiol. 8:811

    Google Scholar 

  • Nicolson, G.L., Poste, G., Ji, T.H. 1977. The dynamics of cell membrane organization.In: Cell Surface Reviews. G. Poste and G.L. Nicolson, editors. p. 1. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Ohnishi, S., Ito, T. 1974. Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes.Biochemistry 13:881

    Google Scholar 

  • Oldfield, E., Chapman, D. 1972. Dynamics of lipid in membranes: Heterogeneity and the role of cholesterol.FEBS Lett. 23:285

    Google Scholar 

  • Oldfield, E., Keough, K.M., Chapman, D. 1972. The study of hydrocarbon chain mobility in membrane systems using spinlabel probes.FEBS Lett. 20:344

    Google Scholar 

  • Pang, K.Y., Miller, K.W. 1978. Cholesterol modulates the effects of membrane perturbers in phospholipid vesicles and biomembranes.Biochim. Biophys. Acta 511:1

    Google Scholar 

  • Poste, G., Allison, A.C. 1973. Membrane fusion.Biochim. Biophys. Acta 300:421

    Google Scholar 

  • Rasmussen, H., Goodman, D.B.P. 1977. Relationships between calcium and cyclic nucleotides in cell activation.Physiol. Rev. 57 (3):421

    Google Scholar 

  • Rigaud, J.L., Gary-Bobo, C.M., Taupin, C. 1974. Effect of chemical modifiers of passive permeability on the conformation of spin-labelled erythrocyte membranes.Biochim. Biophs. Acta 373:211

    Google Scholar 

  • Robblee, L.S., Shepro, D. 1976. The effect of external calcium and lanthanum on platelet calcium content and on the release reaction.Biochim. Biophys. Acta 436:448

    Google Scholar 

  • Rodan, G.A., Feinstein, M.B. 1976. Interrelationships between Ca2+ and adenylate and guanylate cyclases in the control of platelet secretion and aggregation.Proc. Nat. Acad. Sci. USA 73:1829

    Google Scholar 

  • Rousselet, A., Guthmann, C., Matricon, J., Bienvenue, A., Devaux, P.F. 1976. Study of the transverse diffusion of spin labelled phospholipids in biological membranes. I. Human red blood cells.Biochim. Biophys. Acta 426:357

    Google Scholar 

  • Rubin, R.P. 1974.In: Calcium and the Secretory Process. p. 1. Plenum Press, New York

    Google Scholar 

  • Salzman, E.W., Lindon, J., Brier, D., Merrill, E.W. 1977. Surface-induced platelet adhesion, aggregation, and release.Ann. N.Y. Acad. Sci. 283:114

    Google Scholar 

  • Sauerheber, R.D., Gordon, L.M. 1975. Spin label studies on rat liver plasma membrane: Calcium effects on membrane fluidity.Proc. Soc. Exp. Biol. Med. 150:28

    Google Scholar 

  • Sauerheber, R.D., Gordon, L.M., Crosland, R.D., Kuwahara, M.D. 1977. Spin-label studies on rat liver and heart plasma membranes: Do probe-probe interactions interfere with the measurement of membrane properties?J. Membrane Biol. 31:131

    Google Scholar 

  • Schneider, W., Gear, A.R.L. 1975. Significance of glucose and glycogen metabolism for platelet function.In: Biochemistry and Pharmacology of Platelets. Ciba Foundation Symposium 35. K. Elliott and J. Knight, editors. p. 225. Elsevier, Amsterdam

    Google Scholar 

  • Seelig, J. 1970. Spin label studies of oriented smectic liquid crystals (A model system for bilayer membranes).J. Am. Chem. Soc. 92:3881

    Google Scholar 

  • Shattil, S.J., Anaya-Galindo, R., Bennett, J., Colman, R.W., Cooper, R.A. 1975. Platelet hypersensitivity induced by cholesterol incorporation.J. Clin. Invest. 55:636

    Google Scholar 

  • Shattil, S.J., Cooper, R.A. 1976. Membrane microviscosity and human platelet function.Biochemistry 15:4832

    Google Scholar 

  • Sinha, A.K., Shattil, S.J., Colman, R.W. 1977. Cyclic AMP metabolism in cholesterol-rich platelets.J. Biol. Chem. 252:3310

    Google Scholar 

  • Sneddon, J.M. 1972. Divalent cations and the blood platelet release reaction.Nature New Biol. 236:103

    Google Scholar 

  • Steiner, M., Tateishi, T. 1974. Distribution and transport of calcium in human platelets.Biochim. Biophys. Acta 367:232

    Google Scholar 

  • Tada, M., Kirchberger, M.A., Iorio, J., Katz, A.M. 1975. Control of cardiac sarcolemmal adenylate cyclase and Na+,K+-ATPase activities.Circ. Res. 38:8

    Google Scholar 

  • Träuble, H., Eibl, H. 1974. Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment.Proc. Nat. Acad. Sci. USA 71:214

    Google Scholar 

  • Uyesaka, N., Kamino, K., Ogawa, M., Inouye, A., Machida, K. 1976. Lanthanum and some other cation-induced changes in fluidity of synaptosomal membrane studied with nitroxide stearate spin labels.J. Membrane Biol. 27:283

    Google Scholar 

  • Vigdahl, R.L., Marquis, N.R., Tavormina, P.A. 1969. Platelet aggregation. II. Adenylate cyclase, prostaglandin E1, and calcium.Biochem. Biophys. Res. Commun. 37:409

    Google Scholar 

  • Viret, J., Leterrier, F. 1976. A spin label study of rat brain membranes: effects of temperature and divalent cations.Biochim. Biophys. Acta 439:811

    Google Scholar 

  • Wang, T.Y., Hussey, C.V., Sasse, E.A., Hause, L.L. 1977. Platelet aggregation and the ouabain-insensitive ATPase. Ecto-ATPase, reflection of membrane integrity.Am. J. Clin. Pathol. 67:528

    Google Scholar 

  • Watanabe, A., Tasaki, I. 1971. The biionic action potential and indispensability of divalent cations in the external medium for nerve excitation.In: Cellular Mechanisms for Calcium Transten and Homeostasis. G. Nichols and R.H. Wasserman, editors. p. 77. Academic Press, New York

    Google Scholar 

  • Weiss, G.B. 1974. Cellular pharmacology of lanthanum.Annu. Rev. Pharmacol. 14:343

    Google Scholar 

  • Weller, H., Haug, A. 1977. Effects of Ca2+ and K+ on the physical state of membrane lipids inThermoplasma acidophila.J. Gen. Microbiol. 99:379

    Google Scholar 

  • White, J.G. 1977. Physicochemical dissection of platelet structural physiology.In: Platelets: Production, Function, Transfusion, and Storage. M.G. Baldwin and S. Ebbe, editors. p. 235. Grune & Stratton, New York

    Google Scholar 

  • White, J.G., Gerrard, J.M. 1976. Ultrastructural features of abnormal blood platelets.Am. J. Pathol. 83:590

    Google Scholar 

  • White, J.G., Krivit, W. 1967. An ultrastructural basis for the shape changes induced in platelets by chilling.Blood 30:625

    Google Scholar 

  • Wörner, P., Brossmer, R. 1976. Aggregation and release reaction of washed platelets stimulated by lanthanum.Life Sci. 19:661

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauerheber, R.D., Zimmermann, T.S., Esgate, J.A. et al. Effects of calcium, lanthanum, and temperature on the fluidity of spin-labeled human platelets. J. Membrain Biol. 52, 201–219 (1980). https://doi.org/10.1007/BF01869190

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869190

Keywords

Navigation