Skip to main content
Log in

TheChara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Above a critical external pH (about 10.5), theChara membrane acquires new propertes. In this state the membrane potential is close to the equilibrium potentials for H+ and OH, hyperpolarizing as external pH increases with a slope of −59 mV/pH unit. The membrane conductance increases by an average factor of 2.4 above the critical pH. These changes are explained by an increase in permeability to OH (or H+). The establishment of a OH (or H+ permeable membrane at high pH suggests that the large fluxes of OH (or H+ which occur in the alkaline band in photosynthesizing cells are passive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arens, K. 1939. Physiologische Multipolarität der Zelle vonNitella während der Photosynthese.Protoplasma 33:295

    Google Scholar 

  • Beechey, R.B. 1974. Structural aspects of the membrane-bound mitochondrial ATPase.In: Membrane Adenosine Triphosphatases and Transport Processes. J.R. Bronk, editor. p. 41. Biochemistry Society, London.

    Google Scholar 

  • Bisson, M.A., Kirst, G.O. 1980. A brackish water charophyte.Lamprothamnium: Membrane PD and osmotic responses.In: Membrane Transport in Plants. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. p. 603. Elsevier/North Holland Biomedical, Amsterdam.

    Google Scholar 

  • Casey, R.P., Thelen, M., Azzi, A. 1979. Dicylohexylcarbodiimide inhibits proton translocation by cytochromec oxidase.Biochem. Biophys. Res. Commun. 87:1044

    Google Scholar 

  • Ferrier, J.M., Greenleaf, C.R.J., Lucas, W.J. 1980. Can proton transport account for the ion fluxes associated with alkaline banding ofChara corallina.In: Membrane Transport in Plants. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. p. 573 Elsevier/North Holland Biomedical, Amsterdam

    Google Scholar 

  • Fillingame, R.H. 1976. Purification of the carbodiimide-reactive protein component of the ATP energy-transducing system ofEscherichia coli.J. Biol. Chem. 251:6630

    Google Scholar 

  • Hope, A.B., Walker, N.A. 1961. Ionic relations of cells ofChara australis R. Br. IV. Membrane potential differences and resistances.Aust. J. Biol. Sci. 14:26

    Google Scholar 

  • Hope, A.B., Walker, N.A. 1975. Physiology of Giant Algal Cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Keifer, D.W., Spanswick, R.M. 1978. Activity of the electrogenic pump inChara corallina as inferred from measurements of the membrane potential, conductance, and potassium permeability.Plant Physiol. 62:653

    Google Scholar 

  • Keifer, D.W., Spanswick, R.M. 1979. Correlation of adenosine triphosphate levels inChara corallina with the activity of the electrogenic pump.Plant Physiol. 64:165

    Google Scholar 

  • Lucas, W.J. 1975. The influence of light intensity on the activation and operation of the hydroxyl efflux system ofChara corallina.J. Exp. Bot. 26:347

    Google Scholar 

  • Lucas, W.J., Dainty, J. 1977a. Spatial distribution of functional OH carriers along a Characean internodal cell: Determined by the effect of cytochalasin B on H14CO 3 assimilation.J. Membrane Biol. 32:75

    Google Scholar 

  • Lucas, W.J., Dainty, J. 1977b. HCO 3 influx across the plasmalemma ofChara corallina. Divalent cation requirement.Plant Physiol. 60:862

    Google Scholar 

  • Lucas, W.J., Ferrier, J.M., Dainty, J. 1977. Plasmalemma transport of OH inChara corallina. Dynamics of activation and deactivation.J. Membrane Biol. 32:49

    Google Scholar 

  • Lucas, W.J., Smith, F.A. 1973. The formation of alkaline and acid regions on the surface ofChara corallina cells.J. Exp. Bot. 24:1

    Google Scholar 

  • Oda, K. 1962. Polarised and depolarised states of the membrane inChara braunii, with special reference to the transition between the two states.Sci. Rep. Tohoku Univ. Ser. IV, Biol. 28:1

    Google Scholar 

  • Pansini, A., Guerrieri, F., Papa, S. 1978. Control of proton conduction by the H+-ATPase in the inner mitochondrial membrane.Eur. J. Biochem. 92:545

    Google Scholar 

  • Pick, U., Racker, E. 1979a. Purfication and reconstitution of the N,N′-dicyclohexylcarbodiimide-sensitive ATPase complex from spinach chlorplasts.J. Biol. Chem. 254:2793

    Google Scholar 

  • Pick, U., Racker, E. 1979b. Inhibition of the (Ca2+) ATPase from sarcoplasmic reticulum by dicyclohexylcarbodiimide: Evidence for location of the Ca2+ binding site in a hydrophobic region.Biochemistry 18:108

    Google Scholar 

  • Richards, J.L., Hope, A.B. 1974. The role of protons in determining membrane electrical characteristics inChara corallina.J. Membrane Biol. 16:121

    Google Scholar 

  • Sebald, W., Graf, T., Lukins, H.B. 1979. The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex fromNeurospora crassa andSaccharomyces cerevisiae.Eur. J. Biochem. 93:587

    Google Scholar 

  • Sigrist-Nelson, K., Sigrist, H., Azzi, A. 1978. Characterization of the dicyclohexylcarbodiimide binding protein isolated from chloroplast membranes.Eur. J. Biochem. 92:9

    Google Scholar 

  • Simons, R. 1979. Strong electric field effects on proton transfer between membrane-bound amines and water.Nature (London) 280:824

    Google Scholar 

  • Smith, F.A., Walker, N.A. 1976. Chloride transport and the electrochemical potential difference for hydrogen ions.J. Exp. Bot. 27:451

    Google Scholar 

  • Smith, F.A., Walker, N.A. 1980. Effects of NH3 and CH3NH2 on Cl transport, and the pH changes and circulating currents associated with HCO3 transport inChara corallina.J. Exp. Bot. 31:119

    Google Scholar 

  • Spanswick, R.M., Stolarek, J., Williams, E.J. 1967. The membrane potential ofNitella translucens.J. Exp. Bot. 18:1

    Google Scholar 

  • Spear, D.G., Barr, J.K., Barr, C.E. 1969. Localization of hydrogen ion and chloride ion fluxes inNitella.J. Gen. Physiol. 54:397

    Google Scholar 

  • Walker, N.A. 1980. The transport systems of Charophyte and Chlorphyte giant algae and their integration into modes of behaviour.In: Membrane Transport in Plants. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. p. 287. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Walker, N.A., Beilby, M., Smith, F.A. 1979. Amine uniport at the plasmalemma of Charophyte cells. I. Current-voltage curves, saturation kinetics, and effects of unstirred layers.J. Membrane Biol. 49:21

    Google Scholar 

  • Walker, N.A., Smith, F.A. 1977. Circulating electric currents between acid and alkaline zones associated with HCO 3 assimilation inChara.J. Exp. Bot. 28:1190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisson, M.A., Walker, N.A. TheChara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH . J. Membrain Biol. 56, 1–7 (1980). https://doi.org/10.1007/BF01869346

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869346

Keywords

Navigation