Skip to main content
Log in

Distribution of Na+, K+ and Cl between nucleus and cytoplasm inChironomus salivary gland cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Previous studies of the electrochemical activity coefficients of intracellular Na+ and K+ have suggested that the free form of these ions may be unevenly distributed within the intracellular fluids. One possible site of such subcellular compartmentalization is the cell nucleus. In order to examine this possibility, the cells ofChironomus salivary glands were studied with conventional liquid ion-exchange microelectrodes sensitive to K+ and Cl, with a new liquid ion-exchange microelectrode sensitive to Na+, and with open-tipped micropipets. Both the electrochemical activities for Na+, K+ and Cl, and the electrical potential were the same on both sides of the nuclear membrane. The possibility was considered that a difference in the junction potentials within the nucleoplasm and cytoplasm might have masked a real difference in electrical potential between these two phases. To study that possibility, changes were induced in the junction potentials by altering the composition of the fluid filling the exploring micropipets. The results have suggested that the magnitudes of the junction potentials are the same on both sides of the nuclear envelope. The simplest interpretation of the data is that the chemical activities of Na+, K+ and Cl are the same within the nucleus and cytoplasm. This suggests that other subcellular structures, possibly the endoplasmic reticulum and mitochondria, are responsible for subcellular compartmentalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allfrey, V.G., Meudt, R., Hopkins, J.W., Mirsky, A.E. 1961. Sodium-dependent “transport” reactions in the cell nucleus and their role in protein and nucleic acid synthesisProc. Nat. Acad. Sci. USA 47:907

    Google Scholar 

  • Armstrong, W.McD., Lee, C.O. 1971. Sodium and potassium activities in normal and “sodium-rich” frog skeletal muscle.Science 171:413

    Google Scholar 

  • Birks, R.I., Davey, D.F. 1969. Osmotic responses demonstrating the extracellular character of the sarcoplasmic reticulum.J. Physiol. (London) 202:171

    Google Scholar 

  • Brown, A.M., Kunze, D.L. 1974. Ion activities in identifiableAplysia neurons.Adv. Exp. Med. Biol. 50:57

    Google Scholar 

  • Brown, A.M., Walker, J.L., Sutton, R.B. 1970. Increased Cl conductance as the proximate cause of hydrogen ion concentration effects inAplysia neurons.J. Gen. Physiol. 56:559

    Google Scholar 

  • Century, T.J., Fenichel, I.R., Horowitz, S.B. 1970. The concentrations of water, sodium and potassium in the nucleus and cytoplasm of amphibian oocytes.J. Cell Sci. 7:5

    Google Scholar 

  • Cole, K.S. 1968. Membranes, Ions and Nerve Impulses; a Chapter of Classical Biophysics. U. of California Press, Berkeley, Los Angeles

    Google Scholar 

  • Dick, D.A.T., McLaughlin, S.G.A. 1969. The activities and concentrations of sodium and potassium in toad oocytes.J. Physiol. (London)205:61

    Google Scholar 

  • Dörge, A., Gehring, K., Nagel, W., Thurau, K. 1974. Intracellular Na+−K+ concentration of frog skin at different states of Na-transport.In: Microprobe Analysis as Applied to Cells and Tissues. T. Hall, P. Echlin and R. Kaufmann, editors. p. 337. Academic Press, New York

    Google Scholar 

  • Epstein, M.A. 1957. The fine structural organization of Rous tumour cells.J. Biophys. Biochem. Cytol. 3:851

    Google Scholar 

  • Frank, H.S. 1963. Single ion activities and ion-solvent interaction in dilute aqueous solutions.J. Phys. Chem. 67:1554

    Google Scholar 

  • Fry, D.J. 1970. The movement of inorganic ions and water across the nuclear envelope.In: Membranes and Ion Transport. E. Bittar, editor. Vol. 2, p. 259. Wiley-Interscience, London, New York

    Google Scholar 

  • Garrels, R.M. 1967. Ion-sensitive electrodes and individual ion activity coefficients.In: Glass Electrodes for Hydrogen and other Cations. G. Eisenman, editor. Marcel Dekker, New York

    Google Scholar 

  • Hinke, J.A.M. 1961. The measurement of sodium and potassium activities in the squid axon by means of cation-selective micro-electrodes.J. Physiol. (London)156:314

    Google Scholar 

  • Hinke, J.A.M., Caillé, J.P., Gayton, D.C. 1973. Distribution and state of monovalent ions in skeletal muscle based on ion electrode, isotope and diffusion analyses.Ann. N.Y. Acad. Sci. 204:274

    Google Scholar 

  • Huxley, A.F. 1961. A micromanipulator.J. Physiol. (London) 157:5P

    Google Scholar 

  • Ingram, F.D., Ingram, M.J., Hogben, C.A.M. 1974. An analysis of the freeze-dried, plastic embedded electron probe specimen preparation.In: Microprobe Analysis as Applied to Cells and Tissues. T. Hall, P. Echlin and R. Kauffman, editors. p. 119. Academic Press, New York

    Google Scholar 

  • Ito, S., Loewenstein, W.R. 1965. Permeability of a nuclear membrane: Changes during normal development and changes induced by growth hormone.Science 150:909

    Google Scholar 

  • Janáček, K., Morel, F., Bourguet, J. 1968. Étude experimentale des potentials électriques et des activités ioniques dans les cellules épithéliales de la vessie de grenouille.J. Physiol. (Paris) 80:51

    Google Scholar 

  • Katzman, R., Lehrer, G., Wilson, C.E. 1969. Sodium and potassium distribution in puffer fish supramedullary nerve cell bodies.J. Gen. Physiol. 54:232

    Google Scholar 

  • Khuri, R.N., Agulian, S.K., Bogharian, K., Aklanjian, D. 1975. Electrochemical potentials of chloride in proximal renal tubule ofNecturus Maculosus.Comp. Biochem. Physiol. 50A:695

    Google Scholar 

  • Khuri, R., Hajjar, J.J., Agulian, S., Bogharian, K., Kalloghlian, H., Bizri, H. 1972. Intracellular potassium in cells of the proximal tubule ofNecturus Maculosus.Pfluegers Arch. 338:73

    Google Scholar 

  • Kostyuk, P.G., Sorokina, Z.A., Kholodova, Yu.D. 1969. Measurement of activity of hydrogen, potassium and sodium ions in striated muscle fibers and nerve cells.In: Glass Microelectrodes. M. Lavallée, O. Schanne and N.C. Hébert, editors. J. Wiley & Sons, New York

    Google Scholar 

  • Kroeger, H. 1964. Zellphysiologische Mechanismen bei der Regulation von Genaktivitäten in den Riesenchromosomem vonChironomus thummi.Chromosoma 15:36

    Google Scholar 

  • Lavallée, M., Szabo, G. 1969. The effect of glass surface conductivity phenomena and the tip potential of glass micropipette electrodes.In: Glass Microelectrodes. M. Lavallée, O.F. Schanne, and N.C. Hébert, editors. J. Wiley & Sons, New York

    Google Scholar 

  • Lee, C.O., Armstrong, W.McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261

    Google Scholar 

  • Lehninger, A.L. 1965. The Mitochondrion: Basis of Structure and Function. W. A. Benjamin, New York

    Google Scholar 

  • Lev, A.A. 1964. Determination of activity coefficients of potassium and sodium in frog muscle fibers.Nature (London) 201:1132

    Google Scholar 

  • Lev, A.A., Armstrong, W.McD. 1975. Ionic activities in cells.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 6, pp. 59–123. Academic Press, New York

    Google Scholar 

  • Lezzi, M., Gilbert, L.I. 1970. Differential effects of K+ and Na+ on specific bands of isolated polytene chromosomes ofChironomus tentans.J. Cell Sci. 6:615

    Google Scholar 

  • Loewenstein, W.R. 1964. Permeability of the nuclear membrane as determined with electrical methods.In: Protoplasmatologia Handbuch der Protoplasmaforschung. Wien 2, p. 26. Springer-Verlag, Berlin

    Google Scholar 

  • Loewenstein, W.R., Kanno, Y. 1963. Some electrical properties of a nuclear membrane examined with a microelectrode.J. Gen. Physiol. 46:1123

    Google Scholar 

  • MacInnes, D.A. 1961. The Principles of Electrochemistry. Dover, New York

    Google Scholar 

  • Martin, A.R., Wickelgren, W.O., Berànek, R. 1970. Effects of iontophoretically applied drugs on spinal interneurones of the lamprey.J. Physiol. (London)207:653

    Google Scholar 

  • Naora, H., Naora, H., Izawa, M., Allfrey, V.G., Mirsky, A.E. 1962. Some observations on differences in composition between the nucleus and cytoplasm of the frog oocyte.Proc. Nat. Acad. Sci USA 48:853

    Google Scholar 

  • Neild, T.O., Thomas, R.C. 1974. Intracellular chloride activity and the effects of acetylcholine in snail neurons.J. Physiol. (London) 242:453

    Google Scholar 

  • Palay, S.L. 1960. On the appearance of absorbed fat droplets in the nuclear envelope.J. Biophys. Biochem. Cytol. 7:391

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1975. Intracellular distribution of free potassium inChironomus salivary glands.Science 188:1321

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1976. Distribution of free Cl across the nuclear membrane of salivary gland cells ofChironomus.Clin. Res. 24:469A

    Google Scholar 

  • Payne, P.L. 1975. Nucleocytoplasmic movement of fluorescent tracers microinjected into living salivary gland cells.J. Cell Biol. 66:652

    Google Scholar 

  • Robert, M. 1971. Effect of ion strength and pH on the differential decondensation of nucleotides in isolated salivary gland nuclei and chromosomes ofChironomus thummi.Chromosoma 36:1

    Google Scholar 

  • Robinson, R.A., Stokes, R.H. 1959.Electrolyte Solutions (2nd ed.). Butterworths, London

    Google Scholar 

  • Rogus, E., Zierler, K.L. 1973. Sodium and water contents of sarcoplasmic reticulum in rat skeletal muscle: Effects of anisotopic media, ouabain and external sodium.J. Physiol. (London) 233:227

    Google Scholar 

  • Siebert, G., Langendorf, H. 1970. Ion balance in the cell nucleus.Naturwissenschaften 57:119

    Google Scholar 

  • Starodubov, S.M., Kurella, G.A. 1972. Concerning the electrical potential difference and the distribution of ions between cytoplasm and cell nucleus.Zhurnal Obshchei Biologii 33 (4):464

    Google Scholar 

  • Thomas, R.C. 1970. New design for sodium sensitive glass microelectrodes.J. Physiol. (London) 210:82P

    Google Scholar 

  • Watson, M.L. 1955. The nuclear envelope. Its structure and relation to cytoplasmic membranes.J. Biophys. Biochem. Cytol. 1:257

    Google Scholar 

  • Wiener, J., Spiro, D., Loewenstein, W.R. 1965. Ultrastructure and permeability of nuclear membranes.J. Cell Biol. 27:107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, L.G., Civan, M.M. Distribution of Na+, K+ and Cl between nucleus and cytoplasm inChironomus salivary gland cells. J. Membrain Biol. 33, 41–61 (1977). https://doi.org/10.1007/BF01869511

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869511

Keywords

Navigation