Skip to main content
Log in

Microelectrode study of K+ accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Toad bladder and split frog skin were impaled with fine-tipped single- and double-barrelled K+-selective microelectrodes. In order to circumvent membrane damage induced by impaling toad bladder, a null point method was developed, involving elevations of mucosal potassium concentration. The results suggest that intracellular potassium activity of short-circuited toad bladder is approximately 82mm, twice as large as earlier estimates. Far more stable and rigorously defined intracellular measurements were recorded from short-circuited split frog skins. The intracellular positions of the micropipette and microelectrode tips were verified by transient hyperpolarizations of the membrane potential with mucosal amiloride or by transient depolarizations with serosal barium or strophanthidin. Simultaneous impalement of distant cells with separate micropipettes demonstrated that both the baseline membrane potentials and the responses to depolarizing agents were similar, further documenting that frog skin is a functional syncytium. Measurements with double-barrelled microelectrodes and simultaneous single-barrelled microelectrodes and reference micropipettes suggest that the intracellular potassium activity is about 104mm, lower than previously reported. Taken together with measurements of intracellular potassium concentration, this datum suggests that potassium is uniformly distributed within the epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acker, H. 1978. Measurements of potassium changes in the cat carotid body under hypoxia and hypercapnia.Pfluegers Arch. 375:229–232

    Google Scholar 

  • Brown, A.M., Brown, H.M. 1973. Light response of a giantAplysia neuron.J. Gen. Physiol. 62:239–254

    Google Scholar 

  • Carasso, N., Favard, P., Jard, S., Rajerison, R.M. 1971. The isolated frog skin epithelium: I. Preparation and general structure in different physiological states.J. Microscopie 10:315–330

    Google Scholar 

  • Civan, M.M. 1978. Intracellular activities of sodium and potassium.Am. J. Physiol. 234:F261-F269

    Google Scholar 

  • Civan, M.M., Frazier, H.S. 1968. The site of the stimulating action of vasopressin on sodium transport in the toad bladder.J. Gen. Physiol. 51:589–605

    Google Scholar 

  • Civan, M.M., Hall, T.A., Gupta, B.L. 1980. Microprobe study of toad urinary bladder in absence of serosal K+.J. Membrane Biol. 55:187–202

    Google Scholar 

  • Civan, M.M., Hoffman, R.E. 1971. Effect of aldosterone on electrical resistance of toad bladder.Am. J. Physiol. 220:324–328

    Google Scholar 

  • DeLong, J., Civan, M.M. 1978. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.J. Membrane Biol. 42:19–43

    Google Scholar 

  • DeLong, J., Civan, M.M. 1979. Intracellular potassium activity associated with potassium depletion from toad urinary bladder.Colloq. Inst. Nat. Santé Rech. Med. 85:221–229

    Google Scholar 

  • DeLong, J., Civan, M.M., 1980. Intracellular chemical activity of potassium in toad urinary bladder.Curr. Top. Membr. Transp. 13:93–105

    Google Scholar 

  • DiBona, D.R., Civan, M.M., Leaf, A. 1969. The anatomic site of the transepithelial permeability barriers of toad bladder.J. Cell Biol. 40:1–7

    Google Scholar 

  • Farquhar, M.G., Palade, G.E. 1964. Functional organization of amphibian skin.Proc. Natl. Acad. Sci. USA 51:569–577

    Google Scholar 

  • Fisher, R.S., Erlij, D., Helman, S.I. 1980. Intracellular voltage of isolated epithelia of frog skin: Apical and basolateral cell punctures.J. Gen. Physiol. 76:447–453

    Google Scholar 

  • Frazier, H.S. 1962. The electrical potential profile of the isolated toad bladder.J. Gen. Physiol. 45:515–528

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Garcia-Diaz, J.F., Armstrong, W. Mc.D. 1980. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences inNecturus gallbladder.J. Membrane Biol. 55:213–222

    Google Scholar 

  • Guggenheim, S.J., Bourgoignie, J., Klahr, S. 1971. Inhibition by ammonium of sodium transport across isolated toad bladder.Am. J. Physiol. 220:1651–1659

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    Google Scholar 

  • Helman, S.I., Nagel, W., Fisher, R.S. 1979. Ouabain on active transepithelial transport in frog skin.J. Gen. Physiol. 74:105–127

    Google Scholar 

  • Hermsmeyer, K., Sperelakis, N. 1970. Decrease in K+ conductance and depolarization of frog cardiac muscle produced by Ba++.Am. J. Physiol. 219:1108–1114

    Google Scholar 

  • Higgins, J.T., Jr., Gebler, B., Froter, E. 1977. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile inNecturus maculosus.Pfluegers Arch. 371:87–97

    Google Scholar 

  • Huxley, A.F. 1961. A micromanipulator.J. Physiol. (London) 157:5P

    Google Scholar 

  • Kallus, F.T., Vanatta, J.C. 1970. Compartmentation and exchange of potassium in the toad bladder.Biochim. Biophys. Acta 211:61–64

    Google Scholar 

  • Kimura, G., Fujimoto, M. 1977. Estimation of the physical state of potassium in frog bladder cells by ion exchanger microelectrode.Jpn. J. Physiol. 27:291–303

    Google Scholar 

  • Kimura, G., Urakabe, S., Yuasa, S., Miki, S., Takamitsu, Y., Orita, Y., Abe, H. 1977. Potassium activity and plasma membrane potentials in epithelial cells of toad bladder.Am. J. Physiol. 232:F196-F200

    Google Scholar 

  • Leaf, A. 1965. Transepithelial transport and its hormonal control in toad bladder.Ergeb. Physiol. 56:215–263

    Google Scholar 

  • Lin, L.-E., Shporer, M., Civan, M.M., 1982.31P Nuclear magnetic resonance analysis of frog skin.Am. J. Physiol. 243:C74-C80

    Google Scholar 

  • Lindemann, B. 1975. Impalement artifacts in microelectrode recordings of epithelial membrane potentials.Biophys. J. 15:1161–1164

    Google Scholar 

  • MacInnes, D.A. 1961. The Principles of Electrochemistry. Dover, New York

    Google Scholar 

  • Macknight, A.D.C. 1977. The contribution of mucosal chloride to chloride in toad bladder epithelial cells.J. Membrane Biol. 36:55–63

    Google Scholar 

  • Nagel, W. 1976a. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135–143

    Google Scholar 

  • Nagel, W. 1976b. Intercellular junctions of frog skin epithelial cells.Nature (London) 264:469–471

    Google Scholar 

  • Nagel, W. 1979. Inhibition of potassium conductance by barium in frog skin epithelium.Biochim. Biophys. Acta 552:346–357

    Google Scholar 

  • Nagel, W. 1980. Rheogenic sodium transport in a tight epithelium, the amphibian skin.J. Physiol. (London) 302:281–295

    Google Scholar 

  • Nagel, W., Garcia-Diaz, J.F., Armstrong, W. McD. 1981. Intracellular ionic activities in from skin.J. Membrane Biol. 61:127–134

    Google Scholar 

  • Nagel, W., Pope, M.B., Peterson, K., Civan, M.M. 1980. Electrophysiologic changes associated with potassium depletion of frog skin.J. Membrane Biol. 57:235–241

    Google Scholar 

  • Nelson, D.J., Ehrenfeld, J., Lindemann, B. 1978. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3m KCl.J. Membrane Biol. Special Issue:91–119

    Google Scholar 

  • Nielsen, R. 1979. Coupled sodium and potassium transport across isolated frog skin: Effect of ouabain, amiloride and the polyene antibiotic filipin.J. Membrane Biol. 51:161–184

    Google Scholar 

  • Pacifico, A.D., Schwartz, M., MacKrell, T.N., Spangler, S.G., Sanders, S.S., Rehm, W.S. 1969.Am. J. Physiol. 216:536–541

    Google Scholar 

  • Palmer, L.G., Century, T.J., Civan, M.M. 1978. Activity coefficients of intracellular Na+ and K+ during development of frog oocytes.J. Membrane Biol. 40:25–38

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1977. Distribution of Na+, K+ and Cl between nucleus and cytoplasm inChironomus salivary gland cells.J. Membrane Biol. 33:41–61

    Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical sodium transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  • Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium: Intracellular electrical coupling and transepithelial cellular and shunt conductances.J. Gen. Physiol. 64:1–25

    Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von, Thurau, K. 1978a. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transport compartment.J. Membrane Biol. 39:313–331

    Google Scholar 

  • Rick, R., Dörge, A., Macknight, A.D.C., Leaf, A., Thurau, K. 1978b. Electron microprobe analysis of the different epithelial cells of toad urinary bladder: Electrolyte concentrations at different functional states of transepithelial sodium transport.J. Membrane Biol. 39:257–271

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976. Relationship between serosal medium potassium concentration and sodium transport in toad urinary bladder. III. Exchangeability of epithelial cellular potassium.J. Membrane Biol. 26:269–286

    Google Scholar 

  • Sudou, K., Hoshi, T. 1977. Mode of action of amiloride in toad urinary bladder: An electrophysiological study of the drug action on sodium permeability of the mucosal border.J. Membrane Biol. 32:115–132

    Google Scholar 

  • Thompson, I.G., Mills, J.W. 1982. Chloride transport in the glands of the frog skin.Biophys. J. 37:279a

    Google Scholar 

  • Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484–504

    Google Scholar 

  • Walker, J.L. 1976. Ion selective liquid ion exchanger.In: Ion and Enzyme Electrodes in Biology and Medicine. M. Kessler, L.C. Clark Jr., D.W. Lübbers, I.A. Silver, and W. Simon, editors. pp. 116–118. Urban & Schwarzenberg, Munich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLong, J., Civan, M.M. Microelectrode study of K+ accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder. J. Membrain Biol. 72, 183–193 (1983). https://doi.org/10.1007/BF01870585

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870585

Key Words

Navigation