Skip to main content
Log in

Effects of the anesthetics heptanol, halothane and isoflurane on gap junction conductance in crayfish septate axons: A calcium- and hydrogen-independent phenomenon potentiated by caffeine and theophylline, and inhibited by 4-aminopyridine

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

This study has monitored junctional and nonjunctional resistance. [Ca2+] i and [H] i , and the effects of various drugs in crayfish septate axons exposed to neutral anesthetics. The uncoupling efficiency of heptanol and halothane is significantly potentiated by caffeine and theophylline. The modest uncoupling effects of isoflurane, described here for the first time, are also enhanced by caffeine. Heptanol causes a decrease in [Ca2+] i and [H+] i both in the presence and absence of either caffeine or theophylline. A similar but transient effect on [Ca2+] i is observed with halothane. 4-Aminopyridine strongly inhibits the uncoupling effects of heptanol. The observed decrease in [Ca2−] i with heptanol and halothane and negative results obtained with different [Ca2+] o , Ca2+-channel blockers (nisoldipine and Cd2+) and ryanodine speak against a Ca2+ participation. Negative results obtained with 3-isobutyl-l-methylxanthine, forskolin, CPT-cAMP, 8Br-cGMP, adenosine, phorbol ester and H7, superfused in the presence and absence of caffeine and/or heptanol. indicate that neither the heptanol effects nor their potentiation by caffeine are mediated by cyclic nucleotides, adenosine receptors and kinase C. The data suggest a direct effect of anesthetics. possibly involving both polar and hydrophobic interactions with channel proteins. Xanthines and 4-aminopyridine may participate by influencing polar interactions. The potentiating effect of xanthines on cell-to-cell uncoupling by anesthetics may provide some clues on the nature of cardiac arrhythmias in patients treated with theophylline during halothane anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Leefmans, F.J., Rink, T.J., Tsien, R.W. 1981. Free calcium ions in neurons ofHelix aspersa measured with ionselective microelectrodes.J. Physiol. 315:531–548

    PubMed  Google Scholar 

  • Ammann, D., Lanter, F., Steiner, R.A., Schulthess, P., Shijo, Y., Simon, W. 1981. Neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies.Anal. Chem. 53:2267–2269

    Google Scholar 

  • Ammann, D., Oesch, U., Bührer, T., Simon, W. 1987. Design of ionophores for ion-selective microsensors.Can. J. Physiol. Pharmacol. 65:879–884

    PubMed  Google Scholar 

  • Bean, B.P., Shrager, P., Goldstein, D.A. 1981. Modification of sodium and potassium channel kinetics by ether and halothane.J. Gen. Physiol. 77:233–253

    PubMed  Google Scholar 

  • Bennett, M.V.L. 1966. Physiology of electrotonic junctions.Ann. N.Y. Acad. Sci. 37:509–539

    Google Scholar 

  • Bernardini, G., Peracchia, C., Peracchia, L.L. 1984. Reversible effects of heptanol on gap junction structure and cell-to-cell electrical coupling.Eur. J. Cell Biol. 34:307–312

    PubMed  Google Scholar 

  • Burt, J.M. 1989. Uncoupling of cardiac cells by doxyl stearic acids: Specificity and mechanism of action.Am. J. Physiol. 256:C913-C924

    PubMed  Google Scholar 

  • Burt, J.M., Spray, D.C. 1988. Single channel events and gating behavior of the cardiac gap junction channel.Proc. Natl. Acad. Sci. USA 85:3431–3434

    PubMed  Google Scholar 

  • Butcher, R.W., Sutherland, E.W. 1962. Adenosine 3′, 5′-phosphate in biological materials: I. Purification and properties of cyclic 3′, 5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′, 5′-phosphate in human urine.J. Biol. Chem. 237:1244–1250

    Google Scholar 

  • Daly, J.W., Bruns, R.F., Snyder, S.H. 1981. Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines.Life Sci. 28:2083–2097

    PubMed  Google Scholar 

  • Délèze, J., Hervé, J.C. 1983. Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart.J. Membrane Biol. 74:203–215

    Google Scholar 

  • Délèze, J., Hervé, J.C. 1986. Quantitative gap junction alterations in mammalian heart cells quickly frozen or chemically fixed after electrical uncoupling.J. Membrane Biol. 93:11–21

    Google Scholar 

  • Dews, P.B. (editor) 1984. Caffeine—Perspectives from Recent Research. Springer-Verlag. New York

    Google Scholar 

  • Fill, M., Coronado, R. 1988. Ryanodine receptor channel of sarcoplasmic reticulum.Trends Neurosci. 11:453–457

    PubMed  Google Scholar 

  • Franks, N.P., Lieb, W.R. 1982. Molecular mechanisms of general anaesthesia.Nature 300:487–492

    PubMed  Google Scholar 

  • Gainer, H.C., Murray, A.W. 1985. Diacylglycerol inhibits gap junction communication in cultured epidermal cells: Evidence for role of protein kinase C.Biochem. Biophys. Res. Commun. 126:1109–1113

    PubMed  Google Scholar 

  • Giaume, C., Randriamampita, C., Trautmann, A. 1989. Arachidonic acid closes gap junction channels in rat lacrimal glands.Pfluegers Arch. 413:273–279

    Google Scholar 

  • Hauswirth, O. 1969. Effects of halothane on single atrial, ventricular, and Purkinje fibers.Circ. Res. 24:745–750

    PubMed  Google Scholar 

  • Hirche, G. 1984. Blocking and modifying actions of octanol on Na channels in frog myelinated nerve,Pfluegers Arch. 405:180–187

    Google Scholar 

  • Hydon, D.A., Elliott, J.R., Hendry, B.M. 1984. Effects of anesthetics on the squid giant axon.Curr. Top. Membr. Transp. 22:445–482

    Google Scholar 

  • Johnston, M.F., Ramon, F. 1981. Electrotonic coupling in internally perfused crayfish segmented axons.J. Physiol. 317:509–518

    PubMed  Google Scholar 

  • Johnston, M.F., Simon, S.A., Ramon, F. 1980. Interaction of anesthetics with electrical synapses.Nature 286:498–500

    PubMed  Google Scholar 

  • Kramer, G.L., Wells, J.N. 1980. Xanthines and skeletal muscle: Lack of relationship between phosphodiesterase inhibition and increased twitch tension in rat diaphragms.Mol. Pharmacol. 17:73–78

    PubMed  Google Scholar 

  • Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913

    PubMed  Google Scholar 

  • Lynch, C., Vogel, S., Pratila, M.G., Sperelakis, N. 1981. Halothane depression of myocardial slow action potentials.Anesthesiology 55:360–368

    PubMed  Google Scholar 

  • Meda, P., Bruzzone, R., Knodel, S., Orci, L. 1986. Blockage of cell-to-cell communication within pancreatic acini is associated with increased release of amylase.J. Cell Biol. 103:475–483

    PubMed  Google Scholar 

  • Murray, A.W., Fitzgerald, D.J. 1979. Tumor promoters inhibit metabolic cooperation in coculture of epidermal and 3T3 cells.Biochem. Biophys. Res. Commun. 91:395–401

    PubMed  Google Scholar 

  • Niggli, E., Rüdisüli, A., Maurer, P., Weingart, R. 1989. Effects of general anesthetics on current flow across membranes of guinea pig myocytes.Am. J. Physiol. 256:C273-C281

    Google Scholar 

  • Niggli, V., Aduryach, E.S., Carafoli, E. 1981. Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca++-ATPase.J. Biol. Chem. 256:8588–8592

    PubMed  Google Scholar 

  • Oxford, G.S., Swenson, R.P. 1979.n-Alkanols potentiate sodium channel inactivation in squid axon.Biophys. J. 26:585–590

    PubMed  Google Scholar 

  • Peracchia, C. 1980. Structural correlates of gap junction permeation.Int. Rev. Cytol. 66:81–146

    PubMed  Google Scholar 

  • Peracchia, C. 1987. Permeability and regulation of gap junction channels in cells and in artificial lipid bilayers.In: Cell-to-Cell Communication. W.C. DeMello, editor. pp. 65–102. Plenum. New York

    Google Scholar 

  • Peracchia, C. 1988. The calmodulin hypothesis for gap junction regulation six years later.In: Gap Junctions. E.L. Hertzberg and R.G. Johnson, editors. pp. 267–282. Alan R. Liss, New York

    Google Scholar 

  • Peracchia, C. 1990a. Effects of caffeine and ryanodine on low pH 1 -induced changes in gap junction conductance and calcium concentration in crayfish septate axons.J. Membrane Biol. 117:79–89

    Google Scholar 

  • Peracchia, C. 1990b. Increase in gap junction resistance with acdification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration.J. Membrane Biol. 113:75–92

    Google Scholar 

  • Peracchia, C., Girsch, S.J. 1989. Calmodulin site at the C-terminus of the putative lens gap junction protein MIP26.Lens Eye Toxic. Res. 6:613–621

    PubMed  Google Scholar 

  • Ramon, F., Rivera, A. 1987. Gap junction channel modulation: A physiological viewpoint.Prog. Biophys. 48:127–153

    Google Scholar 

  • Requena, J., Whittembury, J., Tiffert, T., Eisner, D.A., Mullins, L.J. 1985. The influence of chemical agents on the level of ionized [Ca++] in squid axons.J. Gen. Physiol. 85:789–804

    PubMed  Google Scholar 

  • Rodriguez, N., Villegas, R., Requena, J. 1988. The interaction of homologous series of alkanols with sodium channels in nerve membrane vesicles.J. Membrane Biol. 104:139–146

    Google Scholar 

  • Rüdisüli, A., Weingart, R. 1989. Electrical properties of gap junction channels in guinea-pig ventricular cell pairs revealed by exposure to heptanol.Pfluegers Arch. 415:12–21

    Google Scholar 

  • Schefer, U., Ammann, D., Pretsch, E., Oesch, U., Simon, W. 1986. Neutral carrier based Ca++-selective electrode with detection limit in the subnanomolar range.Anal. Chem. 58:2282–2285

    Google Scholar 

  • Somogyi, R., Kolb, H.-A. 1988. Cell-to-cell channel conductance during loss of gap junctional coupling in pairs of pancreatic acinar and Chinese hamster ovary cells.Pfluegers Arch. 412:54–65

    Google Scholar 

  • Spray, D.C., Burt, J.M. 1990. Structure-activity relations of the cardiac gap junction channel.Am. J. Physiol. 258:C195-C205

    PubMed  Google Scholar 

  • Tanaka, T., Hidaka, H. 1980. Hydrophobic regions function in calmodulin-enzyme(s) interactions.J. Biol. Chem. 255: 11078–11080

    PubMed  Google Scholar 

  • Twombly, D.A., Narahashi, T. 1989. Calcium channel blocking action of octanol.Soc. Neurosci. Abstr. 15:355

    Google Scholar 

  • Vassort, G., Whittembury, J., Mullins, L.J. 1986. Increase in internal Ca++ and decrease in internal H+ are induced by general anesthetics in squid axons.Biophys. J. 50:11–19

    PubMed  Google Scholar 

  • Veenstra, R.D., De Haan, R.L. 1988. Cardiac gap junction channel activity in embryonic chick ventricle cells.Am. J. Physiol. 254:H170-H180

    Google Scholar 

  • White, R.L., Spray, D.C., Campos de Carvalho, A.C., Wittenberg, B.A., Bennett, M.V.L. 1985. Some electrical and pharmacological properties of gap junctions between adult rat ventricular myocytes.Am. J. Physiol. 249:C447-C455

    Google Scholar 

  • Wojtczak, J.A. 1985. Electrical uncoupling induced by general anesthetics: A calcium-independent process?In: Gap Junctions. M.V.L. Bennett and D.C. Spray, editors. pp. 167–175. Cold Spring Harbor Laboratories. Cold Spring Harbor, New York

    Google Scholar 

  • Yada, T., Rose, B., Loewenstein, W.R. 1985. Diacylglycerol downregulates junctional membrane permeability. TMB-8 blocks this effect.J. Membrane Biol. 88:217–232

    Google Scholar 

  • Yotti, L.P., Chang, C.C., Trosko, J.E. 1979. Elimination of metabolic cooperation in chinese hamster cells by a tumor promoter.Science 206:1089–1091

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peracchia, C. Effects of the anesthetics heptanol, halothane and isoflurane on gap junction conductance in crayfish septate axons: A calcium- and hydrogen-independent phenomenon potentiated by caffeine and theophylline, and inhibited by 4-aminopyridine. J. Membrain Biol. 121, 67–78 (1991). https://doi.org/10.1007/BF01870652

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870652

Key Words

Navigation