Skip to main content
Log in

Photocurrent kinetics of purple-membrane sheets bound to planar bilayer membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The kinetics of light-driven proton transport by bacteriorhodopsin has been studied in a model system consisting of a planar lipid bilayer membrane to which purple membrane fragments have been attached. After excitation with a 10-nsec laser flash a fast negative current-transient occurs, followed by a positive transient which decays to zero. The time course of the photocurrent may be represented by a sum of four exponentials with time constantsτ 1= 1.2μsec,τ 2= 17μsec,τ 4= 57μsec,τ 1= 950μsec (at 25°C). In a D2O mediumτ 2 andτ 3 are increased by a factor of 2.6 and 2.9, respectively, whereasτ 1 remains unaffected. The observed components of the photocurrent can be correlated to photochemical reaction steps inferred from flash-photometric experiments on the basis of the observed time constants, the activation energies, and the effects of pH and D2O. From the photocurrent signals information may be obtained on the magnitude of the charge displacement associated with the elementary transitions of the bacteriorhodopsin molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamberg, E., Apell, H.-J., Dencher, N.A., Sperling, W., Stieve, H., Läuger, P. 1979. Photocurrents generated by bacteriorhodopsin on planar bilayer membranes.Biophys. Struct. Mechan. 5:277

    Google Scholar 

  • Blok, M.C., Van Dam, K. 1979. Association of bacteriorhodopsin with lipid-impregnated filters. Evidence for fusion of bacteriorhodopsin-containing vesicles with the lipid phase of the filter.Biochim. Biophys. Acta 550:527

    Google Scholar 

  • Dancsházy, Zs., Drachev, L.A., Ormos, P., Skulachev, V.P. 1979. Kinetics of the blue-light induced inhibition of photoelectric activity of bacteriorhodopsin.FEBS Lett. 96:59

    Google Scholar 

  • Dancsházy, Z., Karvaly, B. 1976. Incorporation of bacteriorhodopsin into a bilayer lipid membrane: A photoelectric-spectroscopic study.FEBS Lett. 72:136

    Google Scholar 

  • Dencher, N., Wilms, M. 1975. Flash photometric experiments on the photochemical cycle of bacteriorhodopsin.Biophys. Struct. Mechan. 1:259

    Google Scholar 

  • Drachev, L.A., Kaulen, A.D., Skulachev, V.P. 1978. Time resolution of the intermediate steps of the bacteriorhodopsin-linked electrogenesis.FEBS Lett. 87:161

    Google Scholar 

  • Eisenbach, M., Bakker, P., Korenstein, R., Caplan, S.R. 1976. Bacteriorhodopsin: Biphasic kinetics of phototransients and of light-induced proton transfer by sub-bacterialH. holobium particles and by reconstituted liposomes.FEBS Lett. 71:228

    Google Scholar 

  • Frehland, E., Läuger, P. 1974. Ion transport through pores: Transient phenomena.J. Theor. Biol. 47:189

    Google Scholar 

  • Hellingwerf, K.J., Schnurmans, J.J., Westerhoff, H.V. 1978. Demonstration of coupling between the proton-motive force across bacteriorhodopsin and the flow through its photochemical cycle.FEBS Lett. 92:181

    Google Scholar 

  • Herrmann, T.R., Rayfield, G.W. 1978. The electrical response to light of bacteriorhodopsin in planar membranes.Biophys. J. 21:111

    Google Scholar 

  • Hess, B., Kuschmitz, D. 1977. The photochemical reaction of the 412 nm chromophore of bacteriorhodopsin.FEBS Lett. 74:20

    Google Scholar 

  • Hoffmann, W., Graca-Miguel, M., Barnard, P., Chapman, D. 1978. Evidence for conformational transitions in bacteriorhodopsin.FEBS Lett. 95:31

    Google Scholar 

  • Hong, F.T., Montal M. 1979. Bacteriorhodopsin in model membranes. A new component of the displacement photocurrent in the microsecond time scale.Biophys. J. 25:465

    Google Scholar 

  • Hwang, S.-B., Korenbrot, J.I., Stoeckenius, W. 1978. Transient photovoltages in purple membrane multilayers. Charge displacement in bacteriorhodopsin and its photointermediates.Biochim. Biophys. Acta 509:300

    Google Scholar 

  • Janko, K., Benz, R. 1977. Properties of lipid bilayer membranes made from lipids containing phytanic acid.Biochim. Biophys. Acta 470:8

    Google Scholar 

  • Keszthelyi, L., Ormos, P. 1980. Electrical signals associated with the photocycle of bacteriorhodopsin.FEBS Lett. 109:189

    Google Scholar 

  • Korenstein, R., Hess, B. 1977. Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane.Nature (London) 270:184

    Google Scholar 

  • Korenstein, R., Hess, B., Kuschmitz, D. 1978. Branching reaction in the photocycle of bacteriorhodopsin.FEBS Lett. 93:266

    Google Scholar 

  • Korenstein, R., Sherman, W.V., Caplan, R. 1976. Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin.Biophys. Struct. Mechan. 2:267

    Google Scholar 

  • Korenstein, R., Sherman, W.V., Caplan, S.R. 1977. Kinetic isotope effects in the photochemical cycle of bacteriorhodopsin.Biophys. Struct. Mechan. 2:1805

    Google Scholar 

  • Lozier, R.M., Niederberger, W. 1977. The photochemical cycle of bacteriorhodopsin.Fed. Proc. 36:1805

    Google Scholar 

  • Marcus, A.M., Lewis, A. 1978. Resonance Raman spectroscopy of the retinylidene chromophore in bacteriorhodopsin (bR570), bR560, M412, and other intermediates: Structural conclusions based on kinetics, analogues, models, and isotopically labeled membranes.Biochemistry 17:4722

    Google Scholar 

  • Oesterhelt, D. 1976. Isoprenoids and bacteriorhodopsin inHalobacteria.Prog. Mol. Subcell. Biol. 4:133

    Google Scholar 

  • Provencher, S.W., 1976a. A Fourier method for the analysis of exponential decay curves.Biophys. J. 16:27

    Google Scholar 

  • Provencher, S.W. 1976b. An eigenfunction expansion method for the analysis of exponential decay curves.J. Chem. Phys. 64:2772

    Google Scholar 

  • Rosenheck, K., Brith-Lindner, M., Lindner, P., Zakaria, A., Caplan, S.R. 1978. Proteolysis and flash photolysis of bacteriorhodopsin in purple membrane fragments.Biophys. Struct. Mechan. 4:301

    Google Scholar 

  • Seta, P., Ormos, P., d'Epenoux, P., Gavach, C. 1980. Photocurrent response of bacteriorhodopsin adsorbed on bimolecular lipid membranes.Biochim. Biophys. Acta 591:37

    Google Scholar 

  • Sherman, W.V., Korenstein, R., Caplan, S.R. 1976. Energetics and chronology of phototransients in the light response of the purple membrane ofH. halobium.Biochim. Biophys. Acta 430:454

    Google Scholar 

  • Shieh, P., Packer, L. 1976. Photo-induced potentials across a polymer-stabilized planar membrane in the presence of bacteriorhodopsin.Biochem. Biophys. Res. Commun. 71:

  • Stoeckenius, W., Lozier, R.M., Bogomolni, R.A. 1979. Bacteriorhodopsin and the purple membrane of halobacteria.Biochim. Biophys. Acta 505:215

    Google Scholar 

  • Trissel, H.-W., Montal, M. 1977. Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin.Nature (London) 266:655

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahr, A., Läuger, P. & Bamberg, E. Photocurrent kinetics of purple-membrane sheets bound to planar bilayer membranes. J. Membrain Biol. 60, 51–62 (1981). https://doi.org/10.1007/BF01870832

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870832

Keywords

Navigation