Skip to main content
Log in

Characterization of ischemia-induced loss of epithelial polarity

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Total renal ischemia for various time intervals (0–50) min) resulted in the rapid and duration-dependent redistribution of polarized membrane lipids and proteins in renal proximal tubule cells. Following only 15 min of ischemia, apical membrane enrichment of NaK-ATPase, normally a basolateral membrane (BLM) enzyme, had increased (1.6±0.6vs. 2.9±1.2,P<0.01). In vivo histochemical localization of NaK-ATPase showed reaction product throughout the apical microvillar region. PTH-stimulatable adenylate cyclase, another BLM protein, was also found in ischemic but not control apical membrane fractions. One dimensional SDS-PAGE showed four bands, present in control BLM and ischemic apical membranes, which could not be found in control apical membrane fractions. Immunohistochemical localization of leucine aminopeptidase (LAP) showed the enzyme was limited to the apical domain in control cells. Following ischemic injury (50 min), LAP staining could be seen within the cell and along the BLM. Following 24 hr of reperfusion, the BLM distribution of LAP was further enhanced. With cellular recovery from ischemic injury (5 days), LAP was again only visualized in the apical membrane. Duration-dependent alterations in apical and BLM lipids were also observed. Apical sphingomyelin and phosphatidylserine and the cholesterol-tophospholipid ratio decreased rapidly while apical phosphatidylcholine and phosphatidylinositol increased. Taken together, these results indicate renal ischemia causes rapid duration-dependent reversible loss of surface membrane polarity in proximal tubule cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahnen, D.J., Nakansm, P.K., Brown, W.R. 1982. Ultrastructural localization of carcinoembryonic antigen in normal intestine and colon cancer.Cancer 49:2077–2090

    PubMed  Google Scholar 

  2. Ahnen, D.J., Santiago, N.A., Cezard, D.J.P., Gray, G.M. 1982. Intestinal amino-oligopeptidase: In vivo synthesis on intracellular membranes of rat jejunum.J. Biol. Chem. 257:12129–12135

    PubMed  Google Scholar 

  3. Ames, B.N., Dubin, D.T. 1960. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid.J. Biol. Chem. 235:769–775

    PubMed  Google Scholar 

  4. Barac-Neito, M., Murer, H., Kinne, R. 1982. Asymmetry in transport of lactate by basolateral and brush border membranes of the rat kidney cortex.Pfluegers Arch. 392:366–371

    Google Scholar 

  5. Bligh, E.G., Dyer, W.J. 1969. A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol. 37:911–917

    Google Scholar 

  6. Bode, F., Baumann, K., Kinne, R. 1976. Analysis of pinocytic process in rat kidney: II. Biochemical composition of pinocytic vesicles compared to brush border microvilli, lysosomes and basolateral plasma membrane.Biochim. Biophys. Acta 433:294–310

    Google Scholar 

  7. Brown, W.J., Farguhar, M.G. 1984. The mannose-6-phosphate receptor for lysosomal enzymes is concentrated incis golgi cisternae.Cell 36:295–307

    PubMed  Google Scholar 

  8. caplan, M.J., Anderson, H.C., Palade, G.E., Jamieson, J.D. 1986. Intracellular sorting and polarized cell surface delivery of (Na+, K+) ATPase, an endogenous component of MDCK cell basolateral plasma membranes.Cell 46:623–631

    PubMed  Google Scholar 

  9. Carmel, G., Rodrigue, F., Carriere, S., LeGrimellec, C. 1985. Composition and physical properties of lipids from plasma membranes of dog kidney.Biochim. Biophys. Acta 818:149–157

    PubMed  Google Scholar 

  10. Ernst, S.A. 1972. Transport adenosine triphosphatase cytochemistry: II. Cytochemical localization of ouabain-sensitive, potassium dependent phosphatase activity in the secretory epithelium of the avian salt gland.J. Histochem. Cytochem. 20:23–38

    PubMed  Google Scholar 

  11. Esko, J.D., Raetz, C.R.H. 1980, Mutants of Chinese hamster ovary cells with altered membrane phospholipid composition.J. Biol. Chem. 255:4474–4480

    Google Scholar 

  12. Frömter, E. 1979. Solute transpor across epithelia: What can we learn from micropuncture studies on kidney tubules?J. Physiol. (London) 288:1–31

    Google Scholar 

  13. Glaumann, B., Glaumann, H., Berezesky, I.K., Trump, B.F. 1977. Studies on cellular recovery from injury: II. ultrastructural studies on the recovery of the Pars Convoluta of the proximal tubule of the rat kidney from temporary ischemia.Virchows Arch. B. Cell Pathol. 24:1–18

    PubMed  Google Scholar 

  14. Glaumann, B., Glaumann, H., Trump, B.F. 1977. Studies of cellular recovery from injury: III. Ultrastructural studies on the recovery of the Pars Recta of the proximal tubule (p3 segment) of the rat kidney from temporary ischemia.Virchows Arch. B. Cell Pathol. 25:281–308

    PubMed  Google Scholar 

  15. Hanley, M.J. 1980. Isolated nephron segments in a rabbit model of ischemic acute renal failure.Am. J. Physiol. 239:F17-F23

    PubMed  Google Scholar 

  16. Hise, M.K., Mantulin, W.W., Weinman, E.J. 1984. Fluidity and composition of brush border and basolateral membranes from rat kidney.Am. J. Physiol. 247:F434-F439

    Google Scholar 

  17. Imhof, B.A., Vollmers, H.P., Goodman, S.L., Birchmeier, W. 1983. Cell-cell interaction and polarity of epithelial cells: Specific pertubation using a monoclonal antibody.Cell 35:667–675

    PubMed  Google Scholar 

  18. Isobe, Y., Nakane, P.K., Brown, W.R. 1977. Studies on translocation of immunoglobulins through intestinal epithelium: I. Improvements in the peroxidase-labeled antibody method for application to the study of human intestinal mucosa.Acta Histochem. Cytochem. 10:161–171

    Google Scholar 

  19. Jesaitis, A.J., Yguerabide, J. 1986. The lateral mobility of the (Na+, K+)-dependent ATPase in Madin-Darby canine kidney cells.J. Cell Biol. 102:1256–1263

    PubMed  Google Scholar 

  20. Johnston, P.A., Rennke, H., Levinsky, N.G. 1984. Recovery of proximal tubular function from ischemia.Am. J. Physiol. 246:F159-F166

    Google Scholar 

  21. Kania, R.K., Santiago, N.A., Gray, G.A. 1977. Intestinal surface amino-oligopeptidase: II. Substrate kinetics and topography of the active site.J. Biol. Chem. 252:4929–4934

    PubMed  Google Scholar 

  22. Kim, J.K., Dillingham, M.A., Summer, S.N., Ishikawa, S., Anderson, R.J., Schrier, R.W. 1985. Effect of vasopressin antagonist in vasopressin binding, adenylate cyclase activation, and water flux.J. Clin. Invest. 76:1530–1535

    PubMed  Google Scholar 

  23. Kim, J.K., Summer, S.N., Berl, T. 1984. Studies on the cyclic AMP system in the papillary collecting duct on the potassium depleted rat.Kidney Int. 26:384–291

    PubMed  Google Scholar 

  24. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  25. Leuvard, D. 1980. Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells.Proc. Natl. Acad. Sci. USA 77:4132–4136

    PubMed  Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  27. Martinez-Palomo, A., Mesa, I., Beaty, G., Cereijido, M. 1980. Experimental modulation of occluding junctions in a cultured transporting epithelium.J. Cell Biol. 87:736–745

    PubMed  Google Scholar 

  28. Mayahara, H., Fujimoto, K., Ando, I., Ogawa, K. 1980. A new one-step method for the cytochemical localization of ouabain-sensitive, potassium-dependentp-nitrophenylphosphatase activity.Histochem. J. 67:125–138

    Google Scholar 

  29. McLean, I.W., Nakane, P.K. 1974. Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy.J. Histochem. Cytochem. 22:1077–1083

    PubMed  Google Scholar 

  30. Molitoris, B.A., Alfrey, A.C., Harris, R.A., Simon, F.R. 1985. Renal apical membrane cholesterol and fluidity in regulation of phosphate transport.Am. J. Physiol. 249:F12-F19

    PubMed  Google Scholar 

  31. Molitoris, B.A., Hoilien, C. 1987. Static and dynamic components of renal cortical brush border and basolateral membrane fluidity: Role of cholesterol.J. Membrane Biol. 99:165–172

    Google Scholar 

  32. Molitoris, B.A., Kinne, R. 1987. Ischemia induces surface membrane dysfunction: Mechanism of altered Na+-dependent glucose transport.J. Clin. Invest. 80:647–654

    PubMed  Google Scholar 

  33. Molitoris, B.A., Simon, F.R. 1985. Renal cortical brush-border and basolateral membranes: Cholesterol and phospholipid composition and relative turnover.J. Membrane Biol. 83:207–215

    Google Scholar 

  34. Molitoris, B.A., Simon, F.R. 1986. Maintenance of epithelial surface membrane lipid polarity: A role for differing phospholipid translocation rates.J. Membrane Biol. 94:47–53

    Google Scholar 

  35. Molitoris, B.A., Wilson, P.D., Conger, J.D., Falk, S.A. 1987. A novel mechanism for reduced proximal tubule Na+ reabsorption following ischemia.X th Int. Congr. Nephrol. (London) p. 475A (abstr.)

  36. Molitoris, B.A., Wilson, P.D., Schrier, R.W., Simon, F.R. 1985. Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores.J. Clin. Invest. 76:2097–2105

    PubMed  Google Scholar 

  37. Morel, F., Chabardes, D., Imbert-Teboul, M. 1978. Methodology for enzymatic studies of isolated tubular segments: Adenylate cyclase.Methods Pharmacol. 78:297–323

    Google Scholar 

  38. Rabito, C.A., Kreisberg, J.I., Wright, D. 1984. Alakline phosphatase and glutamyl transpeptidase as polarization markers during the organization of LLC-PK1 cells into an epithelial membrane.J. Biol. Chem. 259:574–582

    Google Scholar 

  39. Salomon Y. 1979. Adenylate cyclase assay.In: Advances in Cyclic Nucleotide Research. G. Brooker, P. Greengard, and G.A. Robison, editors. pp. 35–55. Raven, New York

    Google Scholar 

  40. Speigel, D.M., Molitoris, B.A. 1987. Re-establishment of epithelial polarity following ischemia: A requirement for normal cell function. 20th Meeting of American Society of nephrology. Washington, D.C. p. 220A (abstr.)

  41. Taylor, Z., Emmanouel, D.S., Katz, A.I. 1982. Insulin binding and degradation by luminal and basolateral tubular membranes from rabbit kidney.J. Clin. Invest. 69:1136–1146

    PubMed  Google Scholar 

  42. Van Meer, G., Simons, K. 1986. The function of tight junctions in maintaining differences in lipid composition between the apical and basolateral cell surface domains of MDCK cells.EMBO J. 5:1455–1464

    PubMed  Google Scholar 

  43. Ziomek, C.A., Schulman, S., Edidin, M. 1980. Redistribution of membrane proteins in isolated mouse intestinal epithelial cells.J. Cell Biol. 86:849–857

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molitoris, B.A., Hoilien, C.A., Dahl, R. et al. Characterization of ischemia-induced loss of epithelial polarity. J. Membrain Biol. 106, 233–242 (1988). https://doi.org/10.1007/BF01872161

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872161

Key Words

Navigation