Skip to main content
Log in

Stability of relative equilibria. Part I: The reduced energy-momentum method

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Q :

Configuration space, with elements denoted byq ε Q.

TQ :

State space. Points\((q,\dot q)\) are configurations and velocities.

P = T*Q :

Phase space. Pointsz = (q, p) ε P are configurations and momenta.

δz = (δq, 6p) :

Configuration-momentum variations; whereδq ε T qQ, andδp ε T *q Q.

〈·, ·> :

Non-degenerate duality pairing betweenT qQ andT *q Q.

G :

Lie group acting freely onQ on the left. The action ofG onP is symplectic, obtained by cotangent lifts.

:

Lie algebra ofG, with bracket denoted by [·, ·].

* :

Dual of, with duality pairing denoted by a dot. Thusμ · η ε ℝ,.

Adg :

Adjoint action ofG on;\(\left. {Ad_g \eta = \frac{d}{{d\varepsilon }}} \right|_{\varepsilon = 0} g(\exp (\varepsilon \eta ))g^{ - 1} \).

\(Ad_{g^{ - 1} }^* \) :

Coadjoint action of G on;\((Ad_{g^{ - 1} }^* \mu ) \cdot \eta = \mu \cdot Ad_{g^{ - 1} } \eta \).

adv :

Infinitesimal adjoint action of on;\(ad_v \eta = [\nu ,\eta ] = \left. {\frac{d}{{d\varepsilon }}} \right|_{\varepsilon = 0} Ad_{(exp(\varepsilon \nu ))} \eta \).

ad *v :

Infinitesimal coadjoint action of on * (ad * v µη=µ·ad v η.

η Q(q):

Infinitesimal generator;\(\eta _Q (q) = \left. {\frac{d}{{d\varepsilon }}} \right|_{\varepsilon = 0} \exp (\varepsilon \eta ) \cdot q\).

:

Momentum map;J(q, p) · η = 〈P,η Q(q)〉.

V:Q → ℝ:

G-invariant potential energy.

K:P → ℝ:

G-invariant invariant kinetic energy.

H:P → ℝ:

Hamiltonian function:H(z)=V(q)+K(z).

:

Energy-momentum functional:\(H_{\mu _e } (z,\xi ) = V(q) + K(z) - (J(z) - \mu _e ) \cdot \xi \).

〈·, ·〉g :

Positive-definite form onQ associated with the kinetic energy.

FL:TQT *Q:

Legendre transformation; 〈FL(vq),w q〉=〈v q , wqg.

:

Locked inertia tensor defined as.

Σ:P →J −1(0):

Shifting map:Σ(q,p) ≔ (q,p - p J (q, P)), where.

:

Augmented potential.

:

Amended potential.

\(h_{\mu _e } :\mathbb{J}^{ - 1} (\mathbb{O}) \to \mathbb{R}\) :

Reduced Hamiltonian:\(h_{\mu _e } (z) = V_{\mu _e } (q) + K(z)\).

:

Isotropy subalgebra of under the coadjoint action.

:

Orthogonal complement to with respect to at a givenq e ε Q.

:

Space of admissible configuration variations modulo variations generated by. Thus,\(\delta q \in T_{q_e } Q\) is in if and only if 〈δq,η Q(qe)〉g=0 for all η∈.

:

Space of ‘rigid’ configuration variations.

ident ξ :

(Minus) linearized ‘angular’ momentum in the directionξ∈ for fixed locked velocity, i.e., ident ξ (δq):=-[Dj(q e ·δqξ.

:

Space of ‘internal’ configuration variations.

:

Space of admissible configuration-momentum variations modulo variations generated by. The variation\(\delta z = (\delta q,\delta p) \in T_{z_e } P\) is an element of if and only if\(T_{z_e } J \cdot \delta z = 0\) andδq∈.

D :

Vector tangent map; given a mapφ:MV from a manifoldM to a vector spaceV, Dφ(q):T qM → V is given by\(D\phi (q) \cdot \delta q = \left. {\frac{d}{{d\varepsilon }}} \right|_{\varepsilon = 0} \phi (q_\varepsilon )\) for any curveq ε tangent toδq atq.

References

  • R. Abraham &J. E. Marsden [1978],Foundations of Mechanics, Second Edition, Addison-Wesley, Reading.

    Google Scholar 

  • S. S. Antman [1976a], Ordinary differential equations of nonlinear elasticity I: Foundations of the theories of non-linearly elastic rods and shells,Arch. Rational Mech. Anal. 61, 307–351.

    Google Scholar 

  • S. S. Antman [1976b], Ordinary differential equations of nonlinear elasticity II: Existence and regularity theory for conservative boundary value problems,Arch. Rational Mech. Anal. 61, 353–393.

    Google Scholar 

  • V. I. Arnold [1966], Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,Ann. Inst. Fourier, XVI, 319–361.

    Google Scholar 

  • V. I. Arnold [1968], On an a priori estimate in the theory of hydrodynamical stability,Izv. Vyssh. Uchebn. Zaved. Mat. Nauk 54, 225–226 (Russian).

    Google Scholar 

  • V. I. Arnold [1978],Mathematical Methods of Classical Mechanics, Springer, Berlin.

    Google Scholar 

  • V. I. Arnold [1988],Encyclopedia of Dynamical Systems III, Springer, Berlin.

    Google Scholar 

  • S. Chandrasekhar [1977],Ellipsoidal Figures of Equilibrium, Dover Publications, Inc., New York.

    Google Scholar 

  • H. Cohen &R. Muncaster [1988],The Theory of Pseudo-Rigid Bodies, Springer-Verlag, New York.

    Google Scholar 

  • J. L. Ericksen &C. Truesdell [1958], Exact theory of stress and strain in rods and shells,Arch. Rational Mech. Anal. 1, 295–323.

    Google Scholar 

  • J. M. Finn &G. Z. Sun [1987], Nonlinear stability and the energy-Casimir method,Comments on Plasma Physics and Control Fusion 11, 7–25.

    Google Scholar 

  • D. D. Holm, J. E. Marsden, T. Ratiu &A. Weinstein [1985], Nonlinear stability of fluid and plasma equilibria,Physics Reports 123, 1–116.

    Article  Google Scholar 

  • J. Jellinek &D. H. Li [1989], Separation of the energy of overall rotation in anyN-body system,Physics Review Letters 62, 241–244.

    Google Scholar 

  • P. S. Krishnaprasad &J. E. Marsden [1987], Hamiltonian structure and stability for rigid bodies with flexible attachments,Arch. Rational Mech. Anal. 98, 71–93.

    Google Scholar 

  • D. Lewis [1989], Nonlinear stability of a rotating liquid drop,Arch. Rational Mech. Anal. 106, 287–333.

    Google Scholar 

  • D. Lewis &J. C. Simo [1990], Nonlinear stability of pseudo-rigid bodies,Proc. Roy. Soc. London A 427, 281–319.

    Google Scholar 

  • J. E. Marsden, J. C. Simo, D. Lewis &T. A. Posbergh [1989], A block diagonalization theorem in the energy-momentum method,Contemp. Math. American Math. Soc.97, 297–313.

    Google Scholar 

  • J. E. Marsden &A. Weinstein [1974], Reduction of symplectic manifolds with symmetry,Rep. Math. Phys. 5, 121–130.

    Article  Google Scholar 

  • R. Montgomery, J. E. Marsden &T. Ratiu [1984], Gauged Lie-Poisson Structures,Contemp. Math., American Math. Soc.29, 101–114.

    Google Scholar 

  • M. E. McIntyre &T. G. Shepard [1987], An exact local conservation theorem for finite amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Arnold's stability theorem,J. Fluid Mech. 181, 527–565.

    Google Scholar 

  • G. Patrick [1990], Ph. D. thesis, Department of Mathematics, University of California at Berkeley.

  • T. A. Posbergh, P. S. Krishnaprasad &J. E. Marsden [1987], Stability analysis of a rigid body with a flexible attachement using the Energy-Casimir method,Contemp. Math., American Math. Soc.68, 253–273.

    Google Scholar 

  • J. W. S. Rayleigh [1920], On the dynamics of revolving fluids,Scientific Papers 6, 447–453, Cambridge, England.

    Google Scholar 

  • E. J. Routh [1877],A Treatise on the Stability of a Given State of Motion, MacMillan, London.

    Google Scholar 

  • J. C. Simo, J. E. Marsden &P. S. Krishnaprasad [1988], The Hamiltonian structure of elasticity. The material and convective representation of solids, rods and plates,Arch. Rational Mech. Anal. 104, 125–183.

    Google Scholar 

  • J. C. Simo, T. A. Posbergh &J. E. Marsden [1989], Stability of coupled rigid body and geometrically exact rods: Block diagonalization and the Energy-Momentum method,Physics Reports (to appear).

  • J. C. Simo, D. Lewis &J. E. Marsden [1989], Stability of relative equilibria. Part I: The reduced energy-momentum method, Report No. 89-3, Division of Applied Mechanics, Stanford University.

  • J. J. Slawianowski [1988], Affinely rigid body and Hamiltonian systems onGL(n, ℝ), Reports on Mathematical Physics 26, 73–119.

    Article  Google Scholar 

  • S. Smale [1970a], Topology and Mechanics. I,Inventiones Math. 10, 305–331.

    Article  Google Scholar 

  • S. Smale [1970b], Topology and Mechanics. II,Inventiones Math. 11, 45–64.

    Article  Google Scholar 

  • S. Szeri &P. Holmes [1988], Nonlinear stability of axisymmetric swirling flows,Phil. Trans. Roy. Soc. London A326, 327–354.

    Google Scholar 

  • R. Toupin [1964], Theory of elasticity with couple-stresses,Arch. Rational Mech. Anal. 17, 85–112.

    Article  Google Scholar 

  • E. B. Wilson, J. C. Decius &P. C. Cross [1955],Molecular Vibrations, McGraw-Hill (reprinted by Dover).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P.Holmes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simo, J.C., Lewis, D. & Marsden, J.E. Stability of relative equilibria. Part I: The reduced energy-momentum method. Arch. Rational Mech. Anal. 115, 15–59 (1991). https://doi.org/10.1007/BF01881678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01881678

Keywords

Navigation