Skip to main content
Log in

Uptake of phosphorus-32 by vesicular-arbuscular mycorrhizae

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

The uptake and accumulation of phosphorus by mycorrhizal and nonmycorrhizal onion plants were compared. The results of the experiments indicate:

  1. 1.

    Mycorrhizal onion plants accumulated significantly more phosphorus in the roots and tops than nonmycorrhizal plants.

  2. 2.

    Vesicular-arbuscular mycorrhizae are sites of increased phosphorus accumulation compared to nonmycorrhizal roots.

  3. 3.

    A fungitoxicant (parachloronitrobenzene) reduced phosphate accumulation by mycorrhizae but did not significantly affect phosphate accumulation by nonmycorrhizal roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asai, Tôichi, Die Bedeutung der Mykorrhiza für das Pflanzenleben. Jap. J. Botany12, 359–436 (1943).

    Google Scholar 

  2. Baylis, G. T. S., Effect of vesicular-arbuscular mycorrhizas on the growth ofGriselinia littoralis (Cornaceae). New Phytol.58, 274–280 (1959).

    Google Scholar 

  3. Baylis, G. T. S., Experiments on the ecological significance of phycomycetous mycorrhizas. New Phytol.66, 231–243 (1967).

    Google Scholar 

  4. Bowen, G. D., The roles of mycorrhizae and root nodules in tree nutrition. (In press). Papers to the Forestry School University of New England. Aremdale, New South Wales, Australia (1967).

  5. Bowen, G. D., and Rovira, A. D., Microbial factor in short-term phosphate uptake studies with plant roots. Nature (London)211, 665–666 (1966).

    Google Scholar 

  6. Clark, Bryan F., Endotrophic mycorrhizae influence yellow poplar seedling growth. Science140, 1220 (1963).

    Google Scholar 

  7. Daft, M. J., and Nicolson, T. H., Effect ofEndogone on plant growth. New Phytol.65, 343–350 (1966).

    Google Scholar 

  8. Gerdemann, J. W., The effect of mycorrhizae on the growth of maize. Mycologia56, 342–349 (1964).

    Google Scholar 

  9. Gerdemann, J. W., Vesicular-arbuscular mycorrhizae formed on maize and tuliptree byEndogone fasciculata. Mycologia57, 562–57. (1965).

    Google Scholar 

  10. Gerretsen, F. C., The influence of microorganisms on the phosphate intake by the plant. Plant and Soil1, 51–81 (1948).

    Google Scholar 

  11. Gray, L. E., and Gerdemann, J. W., Influence of vesicular-arbuscular mycorrhizas on the uptake of phosphorus-32 byLiriodendron tulipifera andLiquidambar stryaciflua. Nature (London)213, 106–107 (1967).

    Google Scholar 

  12. Hall, J. R., and Hodges, T. K., Phosphorus metabolism of germinating oat seeds. Plant Physiology41, 1459–1464 (1966).

    Google Scholar 

  13. Harley, J. L., and McCready, C. C., The uptake of phosphate by excised mycorrhizal roots of the beech. New Phytol.49, 388–397 (1950).

    Google Scholar 

  14. Harley, J. L., and McCready, C. C., The uptake of phosphate by excised mycorrhizal roots of the beech. II. Distribution of phosphorus between host and fungus. New Phytol.51, 56–65 (1952).

    Google Scholar 

  15. Harley, J. L., and McCready, C. C., The uptake of phosphate by excised mycorrhizal roots of the beech. III. The effect of the fungal sheath on the availability of phosphorus to the core. New Phytol.51, 342–348 (1952).

    Google Scholar 

  16. Holevas, C. D., The effect of vesicular-arbuscular mycorrhizae on the uptake of soil phosphorus by strawberry (Fragaria sp. var. Cambridge favourite). J. Hort. Sci.41, 57–64 (1966).

    Google Scholar 

  17. Katznelson, H. and Bose, B., Metabolic activity and phosphate-dissolving capability of bacterial isolates from wheat roots, rhizosphere, and nonrhizosphere soil. Can. J. Microbiol.5, 79–85 (1959).

    PubMed  Google Scholar 

  18. Kramer, P. J., and Wilbur, K. M., Absorption of radioactive phosphorus by mycorrhizal roots of pine. Science110, 8–9 (1949).

    Google Scholar 

  19. Melin, E., and Nilsson, H., Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol. Plantarum3, 88–92 (1950).

    Google Scholar 

  20. Melin, E., and Nilsons, H., Transfer of labeled nitrogen from glutamic acid to pine seedlings through the mycelium ofBoletus variegatus (Sw.) Fr. Nature (London)171, 134 (1953).

    Google Scholar 

  21. Melin, E., and Nilsson, H., Transport of labeled phosphorus to pine seedlings through the mycelium ofCortinarius glaucopus (Schaeff. ex. Fr.) Fr. Svensk Botan. Tidskr.48, 555–558 (1954).

    Google Scholar 

  22. Melin, E., and Nilsson, H., Ca-45 used as indicator of transport of cations to pine seedlings by means of mycorrhizal mycelium. Svensk Botan. Tidskr.49, 119–112 (1955).

    Google Scholar 

  23. Meloh, K. A., Untersuchungen zur Biologie und Bedeutung der endotrophen Mycorrhiza beiZea mays. L. undAvena sativa L. Arch Mikrobiol.46, 369–381 (1963).

    Google Scholar 

  24. Morrison, T. M., Mycorrhiza and phosphorus uptake, Nature (London)179, 907–908 (1957).

    Google Scholar 

  25. Morrison, T. M., Absorption of phosphorus from soils by mycorrhizal plants. New Phytol.61, 10–20 (1962).

    Google Scholar 

  26. Morrison, T. M., and English, D. A., The significance of mycorrhizal nodules ofAgathis australis. New. Phytol66, 245–250 (1967).

    Google Scholar 

  27. Mosse, Barbara, Growth and chemical composition of mycorrhizal apples. Nature (London)179, 922–924 (1957).

    PubMed  Google Scholar 

  28. Murdoch, C. A., Jacobs, J. A., and Gerdemann, J. W., Utilization of phosphorus sources of different availability of mycorrhizal and nonmycorrhizal maize. Plant and Soil27, 319–334 (1967).

    Google Scholar 

  29. Nesheim, O. N., and Linn, M. B., Deleterious effect of certain fungitoxicants on the formation of mycorrhizae on corn byEndogone fasciculata and on corn root development. Phytopathology59, 297–300 (1969).

    Google Scholar 

  30. Nicolson, T. H., and Gerdemann, J. W., Mycorrhizal Endogone species. Mycologia60, 313–325 (1968).

    Google Scholar 

  31. Peuss, Helge, Untersuchungen zur Ökologie und Bedeutung der Tabak Mycorrhiza. Arch. Mikrobiol.29, 112–142. (1958).

    PubMed  Google Scholar 

  32. Sharoubeem, H. H., Naim, M. S., and Habib, Antoinette, Interaction of phosphorus and Fusarium with the major element nutrition of cotton plants. Acta Phytopathol.1, 53–67 (1966).

    Google Scholar 

  33. Sperber, Joan, Solution of mineral phosphates by soil bacteria. Nature (London)180, 994–995 (1957).

    PubMed  Google Scholar 

  34. Sperber, Joan, The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian J. Agr. Research9, 778–781 (1958).

    Google Scholar 

  35. Sperber, Joan, Solution of apatite by soil microorganisms producing organic acids. Australian J. Agr. Research9, 782–787 (1956).

    Google Scholar 

  36. Subba-Rao, N. S., Bidwell, R. G. S., and Bailey, D. L., The effect of rhizoplane fungi on the uptake and metabolism of nutrients by tomato plants. Can. J. Botany39, 1759–1764 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research Plant Pathologist U.S.D.A., A.R.S., Urbana, Illinois formerly graduate student in Plant Pathology at the University of Illinois. Submitted as portion of Ph.D. thesis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, L.E., Gerdemann, J.W. Uptake of phosphorus-32 by vesicular-arbuscular mycorrhizae. Plant Soil 30, 415–422 (1969). https://doi.org/10.1007/BF01881967

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01881967

Keywords

Navigation