Skip to main content
Log in

The birth of time

  • Part IV. Invited Papers Dedicated To John Archibald Wheeler
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The formulation of the second law of thermodynamics in the frame of general relativity is reconsidered in the case of an istotropic homogeneous universe. We show that there appears then a direct link between the cosmological state of the universe, as expressed in terms of conformal coordinates, and quantities such as energy density, pressure, and entropy associated with the description of nature. In the early universe there appears a kind of phase transition due to transfer of gravitational energy to matter associated with the cosmological expansion if the universe starts with a non-Euclidian (space) state. As a result, we may envisage the possibility of a “cold big-bang model,” in which the universe would start at zero temperature and entropy. The temperature goes then through a maximum before entering the present area of cooling related to adiabatic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Misra,Proc. Natl. Acad. Sci. USA 75, 1627 (1978); B. Misra, I. Prigogine, and M. Courbage,Physica A 98, 1 (1979); E. Tirapegui and S. Martinez,Phys. Lett. A 110, 81 (1985).

    Google Scholar 

  2. A. D. Linde,Rep. Prog. Phys. 47, 925 (1984).

    Google Scholar 

  3. R. H. Brandenberger,Rev. Mod. Phys. 57, 1 (1985).

    Google Scholar 

  4. D. N. Page,Nature 304, 39 (1983).

    Google Scholar 

  5. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), p. 1196.

    Google Scholar 

  6. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), p. 860.

    Google Scholar 

  7. R. C. Tolman,Relativity Thermodynamics and Cosmology (Clarendon Press, Oxford, 1950).

    Google Scholar 

  8. S. Weinberg,Gravitation and Cosmology Principles and applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  9. Cf. B. Misra and I. Prigogine,Lett. Math. Phys. 7, 421 (1983).

    Google Scholar 

  10. L. Cesari,Asymptotic Behavior and Stability Problems in Ordinary Differential Equations (Springer, Berlin, 1963).

    Google Scholar 

  11. A. Casher and F. Englert,Phys. Lett. B 104, 117 (1981); E. Gunzig, “Self-consistent cosmogenesis,” inRelativity, Supersymmetry and Cosmology (Wiley Eastern, New Delhi, 1985); E. Gunzig and P. Nardone,Gen. Relativ. Gravit. 16, 305 (1984).

    Google Scholar 

  12. L. Landau and E. Lifshitz,Teoriia Polia (Nauka, Moscow, 1973);The Classical Theory of Fields, tr. by. N. Hamevmesh (Pergamon, Oxford, 1975).

    Google Scholar 

  13. L. Infeld and A. Schild,Phys. Rev. 68, 250 (1950).

    Google Scholar 

  14. G. E. Tauber,J. Math. Phys. 8, 118 (1967).

    Google Scholar 

  15. I. Prigogine, J. Géhéniau, and E. Gunzig, to appear inProc. Natl. Acad. Sci. USA.

  16. S. R. De Groot and P. Mazur,Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Géhéniau, J., Prigogine, I. The birth of time. Found Phys 16, 437–443 (1986). https://doi.org/10.1007/BF01882727

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01882727

Keywords

Navigation