Skip to main content
Log in

Issues in computing contact forces for non-penetrating rigid bodies

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In rigid-body simulation it is necessary to compute the forces that arise between contacting bodies to prevent interpenetration. This paper studies the problem of rigid-body simulation when the bodies being simulated are restricted to contact at only finitely many points. Some theoretical and practical issues in computing contact forces for systems with large numbers of contact points are considered. Both systems of rigid bodies with and without Coulomb friction are studied. Complexity results are derived for certain classes of configurations and numerical methods for computing contact forces are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold.Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, 1978.

    MATH  Google Scholar 

  2. D. Baraff. Analytical methods for dynamics simulation of non-penetrating rigid bodies. InComputer Graphics (Proc. SIGGRAPH), volume 23, pages 223–232. ACM, New York, July 1989.

    Google Scholar 

  3. D. Baraff. Curved surfaces and coherence for non-penetrating rigid body simulation. InComputer Graphics (Proc. SIGGRAPH), volume 24 pages 19–28. ACM, New York, August 1990.

    Google Scholar 

  4. D. Baraff. Coping with friction for non-penetrating rigid body simulation. InComputer Graphics (Proc. SIGGRAPH), volume 25, pages 31–40. ACM, New York, July 1991.

    Google Scholar 

  5. C. Cai and B. Roth. On the spatial motion of a rigid body with point contact. InInternational Conference on Robotics and Automation, pages 686–695. IEEE, New York, 1987.

    Google Scholar 

  6. J. Canny. Collision detection for moving polyhedra.IEEE Transactions on Pattern Analysis and Machine Intelligence,8(2), 1986.

  7. R. W. Cottle. On a problem in linear inequalities.Journal of the London Mathematical Society,43:378–384, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. F. Cremer.An Architecture for General Purpose Physical System Simulation. Ph.D. thesis, Cornell University, April 1989.

  9. C. W. Cryer. The solution of a quadratic programming problem using systematic overrelaxation.SIAM Journal on Control,9(3):385–392, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. A. Cundall. Formulation of a three-dimensional distinct element model-Part I. A scheme to represent contacts in a system composed of many polyhedral blocks.International Journal of Rock Mechanics, Mineral Science and Geomechanics,25, 1988.

  11. M. A. Erdmann. On motion planning with uncertainty. Master's thesis, Massachusetts Institute of Technology, 1984.

  12. R. Feathersone.Robot Dynamics Algorithms. Klumer, Boston, 1987.

    Google Scholar 

  13. M. R. Garey and D. S. Johnson.Computers and Intractability. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  14. E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing the distance between complex objects in three-space. InInternational Conference on Robotics and Automation, pages 1883–1889. IEEE, New York, 1987.

    Google Scholar 

  15. B. J. Gilmore and R. J. Cipra. Simulation of planar dynamic mechanical systems with changing topologies: Part 1—Characterization and prediction of the kinematic constraint changes; Part 2—Implementation strategy and simulation results for example dynamic systems. InAdvances in Design Automation, pages 369–388. ASME, New York, 1987.

    Google Scholar 

  16. W. Kilmister and J. E. Reeve.Rational Mechanics. Longmans, London, 1966.

    MATH  Google Scholar 

  17. C. E. Lemke. Bimatrix equilibrium points and mathematical programming.Management Science,11:681–689, 1965.

    Article  MathSciNet  Google Scholar 

  18. P. Lötstedt. Coulomb friction in two-dimensional rigid body systems.Zeitschrift für Angewandte Mathematik un Mechanik,61:605–615, 1981.

    Article  MATH  Google Scholar 

  19. P. Lötstedt. Numerical simulation of time-dependent contact friction problems in rigid body mechanics.SIAM Journal of Scientific Statistical Computing,5(2): 370–393, 1984.

    Article  MATH  Google Scholar 

  20. T. Lozano-Pérez. Automatic planning of manipulator transfer movements.IEEE Transaction on Systems, Man and Cybernetics,ll(10):681–698, 1981.

    Article  Google Scholar 

  21. T. Lozano-Pérez. Spatial planning: A configuration space approach.IEEE Transactions on Computers,32(2): 108–120, 1983.

    Article  MATH  Google Scholar 

  22. O. L. Mangasarian. Solution of symmetric linear complementarity problems by iterative methods.Journal of Optimization Theory and Applications,22(4): 465–485, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. T. Mason and Y. Wang. Modeling dynamics for robotic operations. InInternational Conference on Robotics and Automation, pages 678–685. IEEE, New York, 1987.

    Google Scholar 

  24. M. T. Mason and Y. Wang. On the inconsistency of rigid-body frictional planar mechanics. InInternational Conference on Robotics and Automation, pages 524–528. IEEE, New York, 1988.

    Google Scholar 

  25. K, G. Murty.Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, New York, 1988.

    MATH  Google Scholar 

  26. Ju. I. Neimark and N. A. Fufaev.Dynamics of Nonholonomic Systems. American Mathemicatical Society, Providence, RI, 1972.

    MATH  Google Scholar 

  27. R. S. Palmer.Computational Complexity of Motion and Stability of Polygons. Ph.D. thesis, Cornell University, January 1987.

  28. A. E. Taylor and R. M. Mann.Advanced Calculus. Wiley, New York, 1983.

    MATH  Google Scholar 

  29. S. A. Vavasis. Quadratic programming is inNP. Technical Report TR 90-1099, Department of Computer Science, Cornell University, 1990.

  30. Y. Wang. Dynamic analysis of mechanical systems with time-varying topologies: Part 1— Dynamic model and stability analysis; Part 2—Global analysis and simulation results. InAdvances in Design Automation, pages 173–186. ASME, New York, 1990.

    Google Scholar 

  31. A. Witkin and W. Welch. Fast animation and control of nonrigid structures. InComputer Graphics (Proc. SIGGRAPH), volume 24, pages 243–252. ACM, New York, August 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Bruce Randall Donald.

A preliminary version of Sections 2.2, 2.3, 7, and 8.2, and the proof in Section 6 has appeared in conference form [3], [4].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baraff, D. Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica 10, 292–352 (1993). https://doi.org/10.1007/BF01891843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01891843

Key words

Navigation