Skip to main content
Log in

Thermal decomposition of antimony oxyhalides

I. Oxychlorides

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The thermal decomposition of SbOCl, Sb4O5Cl2 and Sb8O11Cl2 has been studied by thermogravimetry with identification of the products resulting in the condensed phase by X-ray diffraction and infrared technique. It is shown that in nitrogen SbOCl undergoes progressive stepwise thermal disproportionation to Sb2O3 and SbCl3 with formation of Sb4O5Cl2 and Sb8O11Cl2 and as intermediates. It is thus confirmed that Sb3O4Cl, suggested to be formed instead of Sb8O11Cl2, is not an intermediate of this process. An identical mechanism is observed in air but with oxidation of Sb2O3 to Sb2O4.

Zusammenfassung

Mittels TG wurde die thermische Zersetzung von SbOCl, Sb4O5Cl2 und Sb8O11Cl2 untersucht und die entstehenden Produkte der kondensierten Phase mittels Röntgendiffraktionsuntersuchungen und IR-Spektroskopie identifiziert. Es wurde gezeigt, daß SbOCl in Stickstoff einer stufenweise thermische Disproportionierung unterliegt, bei der über die Zwischenprodukte Sb4O5Cl2 und Sb8O11Cl2 zuletzt Sb2O3 und SbCl3 entstehen. Es wurde weiterhin bewiesen, daß das anstelle von Sb8O11Cl2 vorgeschlagene Sb3O4Cl kein Zwischenprodukt dieses Zersetzungsvorganges ist. Ein ähnlicher Mechanismus gilt für die Zersetzung in Luft, jedoch mit der Oxidation von Sb2O3 zu Sb2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Cullis and M. M. Hirschler, The Combustion of Organic Polymers, Clarendon Press, Oxford, 1981.

    Google Scholar 

  2. G. Belluomini, M. Fornaseri and M. Nicoletti, Period. Mineral., 36 (1967) 147.

    Google Scholar 

  3. J. J. Pitts, P. H. Scott and D. G. Powell, J. Cell. Plastics, 6 (1970) 35.

    Google Scholar 

  4. J. W. Hastie, J. Res. Nat. Bur. Stand., 77A (1973) 733.

    Google Scholar 

  5. M. Fornaseri, Rend. Acc. Naz. Lincei, 3 VIII (1947) 365.

    Google Scholar 

  6. B. Y. Nurgaliev, B. A. Popovkin and A. V. Novoselova, Zhur. Neorg. Kim., 26 (1981) 1043; Russ. J. Inorg. Chem., 26 (1981) 564.

    Google Scholar 

  7. B. Z. Nurgaliev, Deposit. Doc. 1981, VINITI 575–82, p. 769; CA 98:154288k (1983).

  8. M. Schulte-Kellinghaus and V. Kramer, Experientia, Suppl. (1979) 37 (Angew. Chem. Thermodyn. Thermoanal.), 29.

  9. C. A. Cody, L. DiCarlo and R. K. Darlington, Inorg. Chem., 18 (1979) 1572.

    Google Scholar 

  10. S. E. Golunski, T. G. Nevell and M. I. Pope, Thermochim. Acta, 51 (1981) 153.

    Google Scholar 

  11. ASTM, X-ray Powder Data File.

  12. Handbuch der Präparativen Anorganischen Chemie., G. Brauer, Ed., Verlag, Stuttgart, (1954), p. 465.

    Google Scholar 

  13. K. I. Petrov, V. V. Fomichev, G. V. Zimina and V. E. Plyuschev, Russ. J. Inorg. Chem., 16 (1971) 1006.

    Google Scholar 

  14. K. I. Petrov, Yu. M. Golovin and V. V. Fomichev, Russ. J. Inorg. Chem., 18 (1973) 1554.

    Google Scholar 

  15. M. Edstrand, Acta Chem. Scand., 1 (1947) 178.

    Google Scholar 

  16. R. Matsuzaki, A. Sofue and Y. Saeki, Chem. Lett., (1973) 1311.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was carried out with the financial support of the Progetto Finalizzato Chimica Fine II del Consiglio Nationale delle Ricerche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, L., Paganetto, G., Bertelli, G. et al. Thermal decomposition of antimony oxyhalides. Journal of Thermal Analysis 36, 1141–1153 (1990). https://doi.org/10.1007/BF01904648

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01904648

Keywords

Navigation