Skip to main content
Log in

The application of differential thermal analysis technique to the study of single, binary and ternary oxide catalyst systems

  • Special Reviews
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The authors have reviewed the salient features of the thermal behavior of the following systems:

  1. (A)

    Single oxide systems: (i) Cr2O3, (ii) Fe2O3, (iii) Al2O3, (iv) MnO2, (v) ZrO2, (vi) NiO, (vii) ZnO, (viii) TiO2, (ix) SiO2, (x) ThO2.

  2. (B)

    Binary oxide systems: (i) Cr2O3-Al2O3, (ii) Cr2O3-Fe2O3, (iii) Cr2O3-ZnO, (iv) Al2O3-SiO2, (v) Al2O3-Fe2O3, (vi) MnO-Cr2O3, (vii) Cu-Al2O3, (viii) ZrO2-Cr2O3, (ix) NiO-Cr2O3, (x) ZrO2-NiO, (xi) ThO2-Al2O3.

  3. (C)

    Ternary oxide systems: (i) NiO-Cr2O3-ZrO2, (ii) Fe2O3-Cr2O3-Al2O3.

  4. (D)

    Vanadates: (i) tin vanadate, (ii) copper vanadate, (iii) lead vanadate, (iv) cobalt vanadate and (v) silver vanadate.

Excellent correlations have been obtained in most of the systems between the thermal characteristics of the solids, as revealed by DTA, and their specific surface areas and catalytic activity.

Résumé

On a examiné les principales caractéristiques du comportement thermique des catalysateurs suivants, avec systèmes d'oxydes hétérogènes:

  1. (A)

    Systèmes d'oxydes simples: 1. Cr2O3, 2. Fe2O3, 3. Al2O3, 4. MnO2, 5. ZrO2, 6. NiO, 7. ZnO, 8. TiO2, 9. SiO2, 10. ThO2;

  2. (B)

    Systèmes d'oxydes binaires: 1. Cr2O3-Al2O3, 2. Cr2O3-Fe2O3, 3. Cr2O3-ZnO, 4. Al2O3-SiO2, 5. Al2O3-Fe2O3, 6. MnO-Cr2O3, 7. Cu-Al2O3 8. ZrO2-Cr2O3, 9. NiO-Cr2O3, 10. ZrO2-NiO, 11. ThO3-Al2O3;

  3. (C)

    Systèmes d'oxides ternaires: 1. NiO-Cr2O3-ZrO2; 2. Fe2O3-Cr2O3-Al2O3;

  4. (D)

    Vanadates: 1. d'étain, 2. de cuivre, 3. de plomb, 4. de cobalt, 5. d'argent.

Les caractéristiques thermiques des solides, observées par A. T. D., montrent une bonne concordance avec leurs surfaces spécifiques et leur activité catalytique.

Zusammenfassung

Es wurden die wichtigsten Kennzeichen des thermischen Verhaltens folgender heterogener Katalysator-Systeme untersucht.

  1. (A)

    Einfache Oxydsysteme: 1. Cr2O3, 2. Fe2O3, 3. Al2O3, 4. MnO2, 5. ZrO2, 6. NiO, 7. ZnO, 8. TiO2, 9. SiO2, 10. ThO2.

  2. (B)

    Binäre Oxydsysteme: 1. Cr2O3-Al2O3, 2. Cr2O3-Fe2O3, 3. Cr2O3-ZnO, 4. Al2O3-SiO2, 5. Al2O3-Fe2O3, 6. MnO-Cr2O3 7. Cu-Al2O3, 8. ZrO2-Cr2O3, 9. NiO-Cr2O3, 10. ZrO2-NiO, 11. ThO2-Al2O3.

  3. (C)

    Ternäre Oxydsysteme: 1. NiO-Cr2O3-ZrO2, 2. Fe2O3-Cr2O3-Al2O3.

  4. (D)

    Vanadate: 1. Zinn-, 2. Kupfer-, 3. Blei-, 4. Kobalt-, 5. Silbervanadate.

Gute Übereinstimmung konnte zwischen den durch DTA Messungen gefundenen thermischen Kennzeichen der festen Substanzen und ihren spezifischen Oberflächen, sowie der katalytischen Aktivität festgestellt werden.

Резюме

Исследованы характе рные свойства термического поведе ния следующих систем:

  1. (A)

    Одинарные системы ок исей: (I) Сr2О3, (II) Fe2O3 (III) Аl2О3, (IV) MnO2, (V) ZrO2, (VI) NiO, (VII) ZnO, (VIII) TiO2, (IX) SiO2, (X) ThO2. (Б) Бинарные системы ок исей: (I) Cr2O3- Al2O3, (II) Cr2O3-Fe2O3, (III) Cr2O3-ZnO, (IV) Аl2О3-SiO2, (V) Al2O3-Fe2O3, (VI) MnO-Cr2O3, (VII) Cu- Al2O3, (VIII) ZrO2 Cr2O3, (IX) NiO-Cr2O3, (X) ZrO2-NiO, (XI) ThO2- Al2O3.

  2. (B)

    Тройные системы окис ей: (I) NiO-Cr2O3-ZrO2, (II) Fe2O3-Cr2O3 Al2O3.

(Г) Ванадаты: (2) ванадат о лова, (II) ванадат меди, (III) в анадат свинца, (IV) ванадат коба льта, и (V) ванадат серебра.

В большинстве систем методом дифференциа льного термического анализ а (ДТА) найдена отличная кор реляция, между термич ескими характеристиками ис следуемых веществ, их поверхностью и кат алитической активно стью.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Bhattacharyya andV. S. Ramchandran, J. Sci. Industr. Res., 12 (1952) 549, 550.

    Google Scholar 

  2. S. K. Bhattacharyya andV. S. Ramchandran, J. Sci. Industr. Res., B12 (1953) 279.

    Google Scholar 

  3. S. K. Bhattacharyya andV. S. Ramchandran, J. Sci. Engng. Res. (I. I. T., Kharagpur), 1 (1957) 73.

    Google Scholar 

  4. S. K. Bhattacharyya andV. S. Ramchandran, Bull. Nat. Inst. Sci. India, 12 (1959) 23. (Proc. of the Symposium on Contact Catalysis, 1956, Calcutta.)

    Google Scholar 

  5. S. K. Bhattacharyya, V. S. Ramchandran andJ. C. Ghosh, Adv. in Catalysis, Academic Press Inc., New York, Vol. IX, 1957, p. 114. (Proc. Int. Congr. on Catalysis, 1956, Philadelphia.)

    Google Scholar 

  6. S. K. Bhattacharyya andS. Kameswari, Bull. Nat. Inst. Sci. India, 12 (1959) 43.

    Google Scholar 

  7. S. K. Bhattacharyya andS. Kameswari, J. Chim. phys., 56 (1959) 823.

    Google Scholar 

  8. S. K. Bhattacharyya, S. Kameswari andG. Srinivasan, Z. phys. Chem., 214 (1960) 191.

    Google Scholar 

  9. S. K. Bhattacharyya andN. D. Ganguly, Proc. Nat. Inst. Sci. India, 27A (1961) 588.

    Google Scholar 

  10. S. K. Bhattacharyya, G. Srinivasan andN. D. Ganguly, J. Indian Chem. Soc., 41 (1964) 233.

    Google Scholar 

  11. S. K.Bhattacharyya, Proc. First Int. Congr. Thermal Analysis, Aberdeen, 1965, p. 239.

  12. S. K.Bhattacharyya, G. S.De and N. C.Datta, Proc. Second Int. Congr. Thermal Analysis, Worcester, 1968.

  13. S. K.Bhattacharyya and J.Ghosh, Proc. Second Int. Congr. Thermal Analysis, Worcester, 1968.

  14. Griffith et al., Nature, 172 (1953) 77.

    PubMed  Google Scholar 

  15. Griffith et al., Proc. Roy. Soc., A 224 (1954) 412, 419, 426.

    Google Scholar 

  16. M. Domine-Burges, Compt. Rend., 228 (1949) 1435.

    Google Scholar 

  17. Berezovskaya andSemikhatova, J. Phys. Chem. (U.S.S.R.), 7 (1936) 939.

    Google Scholar 

  18. J. Brenet andA. M. Briot, Compt. Rend., 232 (1951) 1300, 2021.

    Google Scholar 

  19. H. Pichler andK. H. Ziesecke, Bull. U.S. Bur. Min., 488 (1950) 34.

    Google Scholar 

  20. W. O. Milligan andL. Merten, J. Phys. Coll. Chem., 51 (1947) 521.

    Google Scholar 

  21. W. O. Milligan andJ. Holmes, J. Am. Chem. Soc., 63 (1941) 149.

    Google Scholar 

  22. H. B. Weiser, W. O. Milligan andG. A. Mills, J. Phys. Coll. Chem., 52 (1948) 942.

    Google Scholar 

  23. W. O. Milligan andL. Merten, J. Phys. Chem., 50 (1946) 465.

    Google Scholar 

  24. R. P. Eischens andP. W. Selwood, J. Am. Chem. Soc., 70 (1948) 227.

    Google Scholar 

  25. A. G. Oblad, T. H. Milliken andG. A. Mills, Adv. in Catalysis, Academic Press Inc., New York, Vol. III, 1951, p. 199.

    Google Scholar 

  26. V. N. Ipatieff andG. S. Monroe, J. Am. Chem. Soc., 61 (1945) 2168.

    Google Scholar 

  27. M. Taniguchi andT. R. Ingraham, Can. J. Chem., 42 (1964) 2467.

    Google Scholar 

  28. N. Strupler, Compt. Rend., 255 (1962) 527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, S.K., Datta, N.C. The application of differential thermal analysis technique to the study of single, binary and ternary oxide catalyst systems. Journal of Thermal Analysis 1, 75–96 (1969). https://doi.org/10.1007/BF01911248

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01911248

Keywords

Navigation