Skip to main content
Log in

Photothermal applications to the thermal analysis of solids

  • Special Review
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Major application of optically-induced thermal waves to the thermal and thermodynamic analysis of solids are reviewed. The spectrum of available techniques,from the conventional photoacoustic detection to novel photothermal laser probing and frequency multiplexing is discussed, and their utilization for the measurement of thermophysical thermal transport-related parameters of solids is presented. These include the thermal diffusivity, effusivity, conductivity and specific heat. The ability of photothermal methods to perform thermal analysis on large classes of solids, including conducting and insulating bulk materials, crystals, layered porous and coated structures, thin films and inhomogeneous thermal profiles is highlighted. Finally, special capabilities of photothermal analysis, such as the monitoring of surface thermodynamic phenomena and phase transition studies, including high-T c superconductors, are described in order to give a complete overview of the rich potential of photothermal-based methodologies.

Zusammenfassung

Es wird ein Rückblick auf die wichtigsten Anwendungen von optischinduzierten WÄrmewellen bei der thermischen und thermodynamischen Analyse von Feststoffen gegeben. Es wird das gesamte Spektrum der verfügbaren Methoden besprochen, angefangen von der herkömmlichen photoakustischen Detektion bis hin zum neuen photothermischen Laser-Probing und Frequenz-Multiplexing. Ihre Anwendung für die Messung von thermophysischen WÄrmetransportparametern von Feststoffen wird dargelegt. Hierzu gehören TemperaturleitfÄhigkeit, Effusion, WÄrmeleitfÄhigkeit und die spezifische WÄrme. Es wird die FÄhigkeit photothermischer Methoden hervorgehoben, eine breite Gruppe von Feststoffen, darunter Leiter- und Isolatormaterialien, Kristalle, geschichtete poröse und beschichtete Strukturen, dünne Filmschichten und inhomogene thermische Profile, thermisch zu untersuchen. Zuletzt werden spezielle FÄhigkeiten der photothermischen Analyse, z.B. das Monitoring von thermodynamischen OberflÄchenphenomÄnen und Phasenumwandlungsuntersuchungen, einschlie\lich von Hoch-Tc-Supraleitern, beschrieben, um einen vollstÄndigen überblick über das breite LeistungsfÄhigkeit der Methoden auf photothermischer Basis zu geben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. H. Pao, Optoacoustic Spectroscopy and Detection, Academic, New York 1977.

    Google Scholar 

  2. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy, Chemical Analysis, Vol. 57 Wiley, New York 1980.

    Google Scholar 

  3. A. Mandelis (ed.), Photoacoustic and Thermal Wave Phenomena in Semiconductors, North-Holland, New York 1987.

    Google Scholar 

  4. H. Coufal and A. Mandelis, Ferroelectrics (in press).

  5. D. A. Hutchins and A. C. Tam, IEEE Trans. Ultrason., Ferroel., Freq.Control, UFFC-33, 429 (1986).

    Google Scholar 

  6. J.-P. Monchalin, IEEE Trans. Ultrason., Ferroel., Freq. Control, UFFC-33, 485 (1986).

    Google Scholar 

  7. A. Rosencwaig and A. Gersho, J. Appl. Phys., 47 (1976) 64.

    Google Scholar 

  8. W. B. Jackson, N. M. Amer, A. C. Boccara and D. Fournier, Appl. Opt., 20 (1981) 1333.

    Google Scholar 

  9. R. Santos and L. C. M. Miranda, J. Appl. Phys., 52 (1981) 4149.

    Google Scholar 

  10. A. Mandelis and M. M. Zver, J. Appl. Phys., 57 (1985) 4421.

    Google Scholar 

  11. A. Mandelis and B. S. H. Royce, J. Appl. Phys., 50 (1979) 4330.

    Google Scholar 

  12. J. G. Parker, Appl. Opt., 12 (1873) 2974.

    Google Scholar 

  13. M. J. Adams and G. F. Kirkbright, Spectrosc. Lett., 9 (1976) 255.

    Google Scholar 

  14. L. R. Ingersoll, O. J. Zobel and A. C. Ingersoll, Heat Conduction, Univ. Wisconsin Press, 1954.

  15. V. E. Lyamov, U. Madaliev and R. E. Shikhlinskaya, Teplofiz. Vysok. Temp., 19 (1981) 93. [English Trans.]

    Google Scholar 

  16. A. Lachaine and P. Poulet, Appl. Phys. Lett., 45 (1984) 953.

    Google Scholar 

  17. K. N. Madhusoodanan, M. R. Thomas and P. Jacob, J. Appl. Phys., 62 (1987) 1162.

    Google Scholar 

  18. B. K. Bein, H. W. Schmidt, J. Gibkes, J. Pelzl and P. S. Bechthold, Proc. 6th Int. Top. Meet. on Photoacoustic and Photothermal Phenomena II, J. C. Murphy, J. W. Maclachlan Spicer, L. C. Aamodt and B. S. H. Royce, Eds. Springer-Verlag, Berlin 1990 p. 86.

    Google Scholar 

  19. B. K. Bein and J. Pelzl, Proc. 4th Int. Carbon Conf. CARBON 86, Baden-Baden, Deutsche Keram. Gesellschaft, 1986, p. 268.

    Google Scholar 

  20. B. K. Bein, S. Krüger and J. Pelzl, Proc. 4th int Carbon Conf. CARBON 86, Baden-Baden, Deutsche Keram. Gesellschaft, 1986, p. 231; B: K. Bein, S. Krueger and J. Pelzl, J. Nucl. Mat., 119 (1986) 141; B. K. Bein, S. Krueger and J. Pelzl, J. Nucl. Mat., 145 (1987) 458.

    Google Scholar 

  21. A. Mandelis, Y. C. Teng and B. S. H. Royce, J. Appl. Phys., 50 (1979) 7138.

    Google Scholar 

  22. N. C. Fernelius, J. Appl. Phys., 51 (1980) 650.

    Google Scholar 

  23. T. Papa, F. Scudieri and D. Sette, Nuovo Cimento, 1D (1982) 129.

    Google Scholar 

  24. U. Zammit, M. Marinelli, F. Scudieri and S. Martelucci, Appl. Phys. Lett., 50 (1987) 830.

    Google Scholar 

  25. A. Mandelis and J. D. Lymer, Appl. Spectrosc., 39 (1985) 473.

    Google Scholar 

  26. H. W. Godbee and W. T. Ziegler, J. Appl. Phys., 37 (1966) 40; and J. Appl. Phys., 37 (1966) 56.

    Google Scholar 

  27. B. K. Bein, U. Bertsch, W. Rubelowski, M. M. F. d'Aguiar Neto nad J. Pelzl, Proc. 6th Int. Top. Meet. on Photoacoustic and Photothermal Phenomena II, J. C. Murphy, J. W. Maclachlan Spicer, L. C. Aamodt and B. S. H. Royce, Eds. Springer-Verlag, Berlin 1990 p. 82.

    Google Scholar 

  28. S. Aithal, G. Rousset, L. Bertrand, P. Cielo and S. Dallaire, Thin Solid Films, 119 (1984) 153.

    Google Scholar 

  29. P. Charpentier, F. Lepoutre and L. Bertrand, J. Appl. Phys., 53 (1982) 608.

    Google Scholar 

  30. R. T. Swimm, Appl. Phys. Lett., 42 (1983) 955.

    Google Scholar 

  31. B. Bonno, J. L. Laporte and Y. Rousset, J. Appl. Phys., 67 (1990) 2253.

    Google Scholar 

  32. T. Hashimioto, J. Cao and A. Takaku, Thermochim. Acta, 120 (1987) 191.

    Google Scholar 

  33. P. Korpiun, B. Merté, G. Fritsch, R. Tilgner and E. Lüscher, Colloid & Polymer Sci., 261 (1983) 312.

    Google Scholar 

  34. H. G. Kilian and M. Pietralla, Polymer, 19 (1978) 664.

    Google Scholar 

  35. C. L. Choy and K. Young, Polyner, 18 (1977) 769.

    Google Scholar 

  36. L. F. Perondi and L.C. M. Miranda, J. Appl. Phys., 62 (1987) 2955.

    Google Scholar 

  37. G. Rousset, F. Lepoutre and L. Bertand, J. Appl. Phys., 54 (1983) 2383.

    Google Scholar 

  38. O. Pessoa, Jr., C. L. Cesar, N. A. Patel, H. Vargas, C. C. Ghizoni and L. C. M. Miranda, J. Appl. Phys., 59 (1986) 1316.

    Google Scholar 

  39. H. Vargas and L. G. M. Miranda, in Photoacoustic and Thermal Wave Phenomena in Semiconductors, A. Mandelis, Ed. North-Holland, New York 1987 Chap.6.

    Google Scholar 

  40. A. C. Bento, H. Vargas, M. M. F. Aguiar and L. C. M. Miranda, Phys. Chem. Glasses, 28 (1987) 127.

    Google Scholar 

  41. N. F. Leite, N. Cella, H. Vargas and L. C. M. Miranda, J. Appl. Phys., 61 (1987) 3025.

    Google Scholar 

  42. W. Jackson and N. M. Amer, J. Appl. Phys., 51 (1980) 3343.

    Google Scholar 

  43. A. Biswas, T. Ahmed, K. W. Johnson, K. L. Telschow, J. C. Crelling and J. M. Myers, Can. J. Phys., 64 (1986) 1184.

    Google Scholar 

  44. A. K. S. Thakur, Lett. Heat Mass Transfer, 9 (1982) 385.

    Google Scholar 

  45. V. Gusev, Ts. Veliniv and K. Bransalov, Semicond. Sci. Technol., 4 (1989) 20.

    Google Scholar 

  46. H. J. Vidberg, J. Jaarinen and D. O. Riska, Can. J. Phys., 64 (1986) 1178.

    Google Scholar 

  47. J. Jaarinen and M. Luukkala, J. Phys. (Paris), 44, C6 (1983) 503.

    Google Scholar 

  48. A. Mandelis, S. B. Peralta and J. Thoen, J. Appl. Phys., (in press)

  49. A. Mandelis, J. Math. Phys., 26 (1985) 2676.

    Google Scholar 

  50. A. Mandelis, E. Schoubs, S. B. Peralta and J. Thoen, J. Appl. Phys., (in press)

  51. A. Mandelis and B.S. H. Royce, J. Appl. Phys., 51 (1980) 610.

    Google Scholar 

  52. J. T. Dodgson, A. Mandelis and C. Andreetta, Can. J. Phys., 64 (1986) 1074.

    Google Scholar 

  53. A. C. Boccara, D. Fournier and J. Badoz, Appl. Phys. Lett., 36 (1980) 130.

    Google Scholar 

  54. J. C. Murphy and L. C. Aamodt, J. Appl. Phys., 51 (1980) 4580.

    Google Scholar 

  55. W. B. Jackson, N. M. Amer, A. C. Boccara and D. Fournier, Appl. Opt., 20 (1981) 1333.

    Google Scholar 

  56. A. Mandelis, J. Appl.Phys., 54 (1983) 3404.

    Google Scholar 

  57. L. C. Aamodt and J. C. Murphy, J. Appl. Phys., 52 (1983) 581.

    Google Scholar 

  58. A. Salazar, A. Sánchez-Lavega and J. Fernandez, J. Appl. Phys., 65 (1989) 4150.

    Google Scholar 

  59. P. K. Kuo, M. J. Lin, C. B. Reyes, L. D. Favro, R. L. Thomas, D. S. Kim, S. Y. Zhang, L. J. Inglehart, D. Fournier, A. C. Boccara and N. Yacoubi, Can. J. Phys., 64 (1986) 1165.

    Google Scholar 

  60. P. K. Kuo, E. D. Sendler, L. D. Favro and R. L. Thomas, Can. J. Phys., 64 (1986) 1168.

    Google Scholar 

  61. R. L. Thomas, L. J. Inglefart, M. J. Lin, L. D. Favro and P. K. Kuo, Rev. Progr. Quant. Nondestr. Eval., D.O. Thompson and D. E. Chimenti, Eds. Plenum, New York Vol. 4B, 1985 p. 859.

    Google Scholar 

  62. A. Skumanich, H. Dersch, M. Fathallah and N. M. Amer, Appl. Phys., A43 (1987) 297.

    Google Scholar 

  63. A. Mandelis, Rev.Sci. Instrum., 57 (1986) 617.

    Google Scholar 

  64. A. Mandelis, L.M.-L. Borm and J. Tiessinga, Rev. Sci. Instrum., 57 (1986) 622.

    Google Scholar 

  65. A. Mandelis, L.M.-L. Borm and J. Tiessinga, Rev. Sci. Instrum., 57 (1986) 630.

    Google Scholar 

  66. A. Mandelis, IEEE TRans. Ultrason., Ferroel., Freq. Control, UFFC-33 (1986) 596.

    Google Scholar 

  67. A. C. Tam and B. Sullivan, Appl. Phys. Lett., 43 (1983) 333.

    Google Scholar 

  68. R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist and T. A. Strivens, J. Phys. E: Sci. Instrum., 17 (1984) 521.

    Google Scholar 

  69. A. C. Tam, in Photoacoustic and Thermal Wave Phenomena in Semiconductors, A. Mandelis, Ed. North-Holland, New York 1987. Chap.8.

    Google Scholar 

  70. W. P. Leung and A. C. Tam, Opt. Lett., 9 (1984) 93.

    Google Scholar 

  71. W. P. Leung and A. C. Tam, J. Appl. Phys., 56 (1985) 153.

    Google Scholar 

  72. R. E. Imhof, F. R. Thornley, J. R. Gilchrist and D. J. S. Birch, J. Phys. D: Appl. Phys., 19 (1986) 1829.

    Google Scholar 

  73. D. L. Balageas, A. A. Deom and D. M. Boscher, Mat. Eval., 45 (1987) 2608.

    Google Scholar 

  74. D. L. Balageas, J. C. Krapez and P. Cielo, J. Appl. Phys., 59 (1986) 348.

    Google Scholar 

  75. L. C. Aamodt, J. W. Maclachlan Spicer and J. C. Murphy, J. Appl. Phys., 68 (1990) 6087.

    Google Scholar 

  76. J. A. Stolwijk and J. D. Hardy, J. Appl. Physiol., 20 (1965) 1006.

    PubMed  Google Scholar 

  77. P. Cielo, L. A. Utracki and M. Lamontagne, Can. J. Phys., 64 (1986) 1172.

    Google Scholar 

  78. H. Coufal, Appl. Phys. Lett., 44 (1984) 59.

    Google Scholar 

  79. A. Mandelis, Chem. Phys. Lett., 108 (1984) 388.

    Google Scholar 

  80. A. Mandelis and M. M. Zver, J. Appl. Phys., 57 (1985) 4421.

    Google Scholar 

  81. C. E. Yeack, R. L. Melcher and S. S. Jha, J. Appl. Phys., 53 (1982) 3947.

    Google Scholar 

  82. J. F. Power and A. Mandelis, Rev. Sci. Instrum., 58 (1987) 2024.

    Google Scholar 

  83. J. F. Power and A. Mandelis, Rev. Sci. Instrum., 58 (1987) 2018.

    Google Scholar 

  84. H. Coufal and P. Hefferle, Appl. Phys., A38 (1985) 213.

    Google Scholar 

  85. P. K. John, L. C. M. Miranda and A. Rastogi, Phys. Rev., B34 (1986) 4342.

    Google Scholar 

  86. S. B. Lang, Ferroelectrics, 93 (1987) 87.

    Google Scholar 

  87. G. C. Ghizoni and L. C. M. Miranda, Phys. Rev., B32 (1985) 8392.

    Google Scholar 

  88. P. S. Bechthold, M. Campagna and T. Schober, Solid state Commun., 36 (1980) 225.

    Google Scholar 

  89. P. Korpiun and R Tilgner, J. Appl. Phys., 51 (1980) 6115.

    Google Scholar 

  90. B. Büchner and P. Korpiun, Appl. Phys., B43 (1987) 29.

    Google Scholar 

  91. M. Grandolfo, C. Ranghiasci, P. Vecchia and Sh. M. Efendiev, Ferroelectrics, 56 (1984) 87.

    Google Scholar 

  92. C. Pichon. M. Le Liboux, D. Fournier and A. C. Boccara, Appl. Phys. Lett., 35 (1979) 435.

    Google Scholar 

  93. M. A. A. Siquiera, C. C. Ghizoni, J. I. Vargas, E. A. Menezas, H. Vargas and L. C. M. Miranda, J. Appl. Phys., 51 (1980) 1403.

    Google Scholar 

  94. A Mandelis, F. Care, K. K. Chan and L. C. M. Miranda, Appl. Phys., A38 (1985) 117.

    Google Scholar 

  95. S. Pekker and E. M. Eyring, Appl. Spectrosc., 40 (1986) 397.

    Google Scholar 

  96. R. Florian, J. Pelzl, M. Rosenberg, H. Vargas and R. Wernhardt, Phys. Stat Sol., A48 (1978) K35.

    Google Scholar 

  97. S. Kojima, Jpn. J. Appl. Phys., 24 (1985) 1571.

    Google Scholar 

  98. S. Kojima, Jpn. J. Appl. Phys., 25 (1986) 215.

    Google Scholar 

  99. R. E. Imhof, F. R. Thornley, J. R. Gilchrist and D. J. S. Birch, Appl. Phys., B43 (1987) 23.

    Google Scholar 

  100. L. Gomes, M. M. F. Vieira, S. L. Baldochi, N. B. Lima, M. A. Novac, N. D. Vieira, Jr., S. P. Morato. A. J. P. Braga, C. L. Cesar, A. F. S. Penna and J. Mendes Filho, J. Appl. Phys., 63 (1988) 5044.

    Google Scholar 

  101. Y. S. Song, H. K. Lee and N. S. Chang, J. Appl. Phys., 65 (1989) 2568.

    Google Scholar 

  102. M. Marinelli, F. Murtas, M. G. Mecozzi, U. Zammit, R. Pizzoferrato, F. Scudieri, S. Martellucci and M. Marinelli, Appl. Phys., A51 (1990) 387.

    Google Scholar 

  103. S. B. Peralta, Z. H. Chen and A. Mandelis, Appl. Phys. A (in press); S. B. Peralta, Z. H. Chen and A. Mandelis, Feroelectrics (in press)

  104. P. Hess, in Photoacoustic, Photothermal and Photochemical Processes at Surface and in Thin Films, P. Hess, Ed. Springer-Verlag, Berlin 1989. Chap. 3.

    Google Scholar 

  105. M. Buck and P. Hess, J. Electron Spectrosc., 45 (1987) 237.

    Google Scholar 

  106. L. M. Cousins and S. R. Leone, Chem. Phys. Lett., 155 (1989) 162.

    Google Scholar 

  107. W. C. Natzle, D. Padowitz and G. J. Sibener, J. Chem. Phys., 88 (1988) 7975.

    Google Scholar 

  108. H. Coufal, F. TrÄger, T. J. Chuang and A. C. Tam, Surf. Sci. Lett., 145 (1984) L504.

    Google Scholar 

  109. H. Coufal, T. J. Chuang and F. TrÄger, IBM Res. Report, RJ 4344 (1984).

  110. F. TrÄger, H. Coufal and T. J. Chuang, Phys. Rev. Lett., 49 (1982) 1720.

    Google Scholar 

  111. T. J. Chuang, H. Coufal and F. TrÄger, J. Vac. Sci. Technol., A1 (1983) 1236.

    Google Scholar 

  112. M. C. Cresser and N. T. Livesey, Analyst, 109 (1984) 219.

    Google Scholar 

  113. A. Lörincz and A. Miklós, in Progresse in Photothermal and Photoacoustic Science and Technology, A. Mandelis, Ed. (North-Holland, New York in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to gratefully acknowledge the continuous support of the Ontario Laser and Lightwave Research Center (OLLRC) and of the Natural Sciences and Engineering Research Council of Canada (NSERC), for much of the research performed in my Laboratory as described and discussed in this Review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandelis, A. Photothermal applications to the thermal analysis of solids. Journal of Thermal Analysis 37, 1065–1101 (1991). https://doi.org/10.1007/BF01932803

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01932803

Keywords

Navigation