Skip to main content
Log in

Complexing agents from microorganisms

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The majority of extracellular complexing ligands produced by microorganisms are summarized as being of low molecular mass (<10,000 daltons) and are usually released as part of metal detoxification processes. These exudates appear to exhibit strong metal-binding characteristics, often reducing metal toxicity. Under certain conditions microbes produce metal-specific compounds of low molecular mass called siderophores; although these are normally specific for iron they also have relatively high affinities for radionuclides such as Pu and facilitate their uptake into cells. The occurrence of specific actinide complexing agents has been recorded.

The breakdown of lignins and cellulosic material produces large macromolecular compounds called humates. These contain multiligand sites and display a wide range of complexing abilities. They form both soluble and insoluble complexes with toxic elements with various results. Humates also considerably influence adsorption of metals to substrate surfaces and at high pH may compete with OH-ions for metal binding.

As well as with extracellular ligands, metals can interact directly with microorganisms by accumulation in subcellular compartments or by adsorption on bacterial surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard, B., and Persson, G., Organic complexing agents in low and medium level radioactive waste. NAGRA techn. Rep. (1985) 85-19.

  2. Anderson, R. F., Bacon, P. M., and Brewer, P. G., Elevated concentrations of actinides in Mono Lake, California, USA. Science216 (1982) 514–516.

    CAS  PubMed  Google Scholar 

  3. Angle, J. S., and Chaney, R. L., Cadmium resistance screening in Nitrilotriacetate-buffered minimal media. Appl. envir. Microbiol.55 (1989) 2101–2104.

    CAS  Google Scholar 

  4. Auliitia, T. U., and Pickering, W. F., The specific sorption of trace amounts of Cu, Pb, and Cd by inorganic particulates. Water Air Soil Pollut.35 (1987) 177–186.

    Google Scholar 

  5. Babich, H., and Stotzky, G., Environmental factors that influence the toxicity of heavy metals and gaseous pollutants to microorganisms. CRC crit. Rev. Microbiol.8 (1980) 99–145.

    CAS  Google Scholar 

  6. Babich, H., and Stotzky, G., Influence of chemical speciation on the toxicity of heavy metals to the microbiota, in: Aquatic Toxicology, pp. 1–46. Ed. J. O. Nriagu. Wiley, New York 1983.

    Google Scholar 

  7. Barber, R. T., and Ryther, J. H., Organic chelators affecting primary production in the Cromwell Current upwelling. J. exp. mar. Biol. Ecol.3 (1969) 191–199.

    CAS  Google Scholar 

  8. Belde, P. J. M., Kessels, B. G. F., Moelans, I. M., and Borst-Pauwels, G. W. F. H., Cd2+ Uptake, Cd2+ binding and loss of cell K+ by a Cd-sensitive and a Cd-resistant strain ofSaccharomyces cerevisiae. FEMS Microbiol. Lett.49 (1988) 493–498.

    CAS  Google Scholar 

  9. Bell, C. F., Principles and Applications of Metal Chelation. Oxford Chemistry Series No 25. Clarendon Press, Oxford 1977.

    Google Scholar 

  10. Beveridge, T. J., The immobilisation of soluble metals by bacterial walls. Biotech. Bioeng. Symp.16 (1986) 127–139.

    CAS  Google Scholar 

  11. Beveridge, T. J., Role of cellular design in bacterial metal accumulation and mineralization. A. Rev. Microbiol.43 (1989) 147–171.

    CAS  Google Scholar 

  12. Bondietti, E. A., Reynolds, S. A., and Shanks, M. H., Interaction of plutonium with complexing organics in soils and natural waters, in: Transuranium Nuclides in the Environment, pp. 273–287. I.A.E.A., Vienna 1976.

    Google Scholar 

  13. Borg, H., Metal fractionation by dialysis, problems and possibilities, in: Speciation of Metals in Water, Sediment, and Soil Systems. Ed. L. Lander Lecture notes in earth sciences11 (1987) 75–85.

  14. Buffle, J., A critical comparison of studies of complex formation between Cu(II) and fulvic substances of natural waters. Analyt. chim. Acta116 (1980) 255–274.

    CAS  Google Scholar 

  15. Buffle, J., Complexation Reactions in Aquatic Systems (an Analytical Approach). Ellis Harwood Series in Analytical Chemistry, 1988.

  16. Buffle, J., Greter, F., and Haerdi, W., Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copper ion-selective electrodes. Analyt. Chem.49 (1977) 216–222.

    CAS  Google Scholar 

  17. Bulman, R. A., Chemistry of plutonium and the transuranics in the biosphere. Structure and Bonding, Berlin34 (1978) 39–77.

    CAS  Google Scholar 

  18. Campbell, P. G. C., and Tessier, A., Determination of the complexation capacity of natural waters using metal solubilisation techniques. Dev. Biogeochem.1 (1984) 67–81.

    Google Scholar 

  19. Chanmugathas, P., and Bollag, J.-M., Microbial mobilisation of cadmium in soil under aerobic and anaerobic conditions. J. envir. Qual.16 (1987) 161–167.

    CAS  Google Scholar 

  20. Chanmugathas, P., and Bollag, J.-M., A column study of biological mobilisation and speciation of cadmium in soil. Archs envir. Contam. Toxic.17 (1988) 229–237.

    CAS  Google Scholar 

  21. Chart, H., and Trust, T., Acquisition of iron byAeromonas salmonicida. J. Bact.156 (1983) 758–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, R. W., Whanger, P. D., and Weswig, P. H., Biological function of metallothionein. Biochem. Med.12 (1975) 95.

    CAS  PubMed  Google Scholar 

  23. Chmielowski, J., and Klapcinska, B., Bioaccumulation of germanium byPseudomonas putida in the presence of two selected substrates. Appl. envir. Microbiol.51 (1986) 1099–1103.

    CAS  Google Scholar 

  24. Cleveland, J. M., and Rees, T. F., Characterisation of plutonium in Maxey Flats radioactive trench leachates. Science212 (1981) 1506–1509.

    CAS  PubMed  Google Scholar 

  25. Colombo, P., Tate, R. L., and Weiss, A. J., Assessment of microbial processes on radionuclide mobility in shallow land burial. BNL-51574, 1973.

  26. Cox, C. D., Iron uptake with ferripyochelin and ferric citrate byPseudomonas aeruginosa. J. Bact.142 (1980) 581–587.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dahlman, R. C., Bondietti, E. A., and Eyman, L. D., Biological pathways and chemical behaviour of plutonium and other actinides in the environment, in: Actinides in the Environment. ACS Symp. Ser.35 (1976) 47–81.

  28. Davies, J. A., and Leckie, J., Effects of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Envir. Sci. Technol.12 (1978) 1309–1315.

    Google Scholar 

  29. Doyle, J. J., Marshall, R. T., and Pfander, W. H., Effects of cadmium on the growth and uptake of cadmium by microorganisms. Appl. Microbiol.29 (1975) 562–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dwyer, F. P., and Mellor, D. P., Chelating Agents and Metal Chelates, Academic Press, New York 1964.

    Google Scholar 

  31. Ehrlich, H. L., Geomicrobiology. Marcel Dekker, New York 1981.

    Google Scholar 

  32. Ehrlich, H. L., Interactions of heavy metals and microorganisms, in: Mineral Exploration: Biological Systems and Organic Matter, pp. 221–237. Eds D. Carlisle, W. L. Berry, I. R. Kaplan and J. R. Watterson. Prentice-Hall, Englewood Cliffs, N.J. 1986.

    Google Scholar 

  33. Estep, M., Armstrong, J. E., and Van Baalen, C., Evidence for the occurrence of specific iron III binding compounds in near shore marine ecosystems. Appl. Microbiol.30 (1975) 186–188.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Evanlyo, L. P., Kadis, S., and Maudsley, J. R., Siderophore production inProteus mirabilis. Can. J. Microbiol.30 (1984) 1046–1051.

    Google Scholar 

  35. Fedorak, P., Westlake, D., Anders, C., Kratochvil, B., Motkosky, N., Anderson, W., and Huck, P., Microbial release of226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes. Appl. envir. Microbiol.52 (1986) 262–268.

    CAS  Google Scholar 

  36. Fisher, N. S., and Fabris, J. G., Complexation of Cu, Zn and Cd by metabolites excreted from diatoms. Mar. Chem.11 (1982) 245–255.

    CAS  Google Scholar 

  37. Fisher, N. S., Bierregaard, P., and Huynh-Ngoc, L., Interactions of marine plankton with transuranic elements 2. Influence of dissolved organic compounds on americium and plutonium accumulation in a diatom. Mar. Chem.13 (1983) 45–56.

    CAS  Google Scholar 

  38. Florence, L., Development of physico-chemical speciation procedures to investigate the toxicity of Co, Pb, Cd and Zn towards aquatic biota. Analyt. chim. Acta141 (1982) 73–94.

    CAS  Google Scholar 

  39. Florence, T. M., Electrochemical approaches to trace element speciation in waters: A review. Analyst.111 (1986) 489–505.

    CAS  Google Scholar 

  40. Francis, A. J., Dobbs, S., and Nine, B. J., Microbial leachates from shallow land low level radioactive waste disposal sites. Appl. envir. Microbiol.40 (1980) 108–113.

    CAS  Google Scholar 

  41. Francis, A. J., Microbial transformation of low-level radioactive waste, in: Environmental Migration of Long-Lived Radionuclides. I.A.E.A. report, SM-257/72, 1982.

  42. Francis, A. J., Anaerobic microbial transformations of radioactive wastes in subsurface environments, in: Proc. IUR-CEC Workshop on ‘Role of Microorganisms on the Behaviour of Radionuclides in Aquatic and Terrestrial Systems and their Transfer to Man’. Eds F. Bonnyns-Van Gelder and R. Kirchman, pp. 229–237. Brussels 1984.

  43. Gadd, G. M., Accumulation of metals by microorganisms and algae, in: Biotechnology, vol. 6b, pp. 402–433. Eds H.-J. Rehm and G. Reed. VCH Verlagsgesellschaft, Weinheim 1988.

    Google Scholar 

  44. Gadd, G. M., Heavy metal accumulation by bacteria and other microorganisms. Experientia46 (1990) 834–840.

    CAS  Google Scholar 

  45. Gamble, D. S., Underdown, A. W., and Langford, C. H., Copper-(II) titration of fulvic acid ligand sites with theoretical, potentiometric and spectrophotometric analysis. Analyt. Chem.52 (1980) 1901–1908.

    CAS  Google Scholar 

  46. Giesy, J. P., Leversee, G. T., and Williams, D. R., Effects of naturally occuring aquatic organic fractions on cadmium toxicity toSimocephalus serrulatus (Daphnidae) andGambusia affinis (Poecillidae). Water Res.11 (1977) 1013–1020.

    CAS  Google Scholar 

  47. Grill, E., Winnaker, E. L., and Zenk, M. H., Phytochelatins, the principle heavy metal complexing peptides of higher plants. Science230 (1985) 674–676.

    CAS  PubMed  Google Scholar 

  48. Hale, V. Q., and Wallace, A., Effect of chelates on the uptake of some heavy metal radionuclides from soil by bush beans. Soil Sci.109 (1969) 262–263.

    Google Scholar 

  49. Hall, R. M., and Ratledge, C., Equivalence of mycobactins fromMycobacterium senegalense, Mycobacterium farcinogenes andMycobacterium fortuitum. J. gen. Microbiol.131 (1985) 1691–1696.

    CAS  PubMed  Google Scholar 

  50. Hantke, K., Dihydroxybenzolyserine-a siderophore forE. coli. FEMS Microbiol. Lett.67 (1990) 5–8.

    CAS  Google Scholar 

  51. Hart, B. T., Trace metal complexing capacity of natural waters: A Review. Envir. Technol. Lett.2 (1981) 95–110.

    CAS  Google Scholar 

  52. Higham, D., Sadler, P. J., and Scawen, M. D., Cadmium resistantPseudomonas putida synthesise novel cadmium proteins. Science225 (1984) 1043–1046.

    CAS  PubMed  Google Scholar 

  53. Houba, C., and Remacle, J., Factors influencing toxicity of cadmium toTetrahymena pyrifornus particulate or soluble form and degree of complexation. Ser. A. Ecol. Biol.28 (1987) 35–43.

    Google Scholar 

  54. Imber, B., Robinson, M. G., and Pollehne, F., Complexation by diatom exudates in culture and the field. Devl. Biogeochem.1 (1984) 429–441.

    Google Scholar 

  55. Jernelov, A., and Martin, A., Ecological implications of metal metabolism by microorganisms. A. Rev. Microbiol.29 (1987) 61–79.

    Google Scholar 

  56. Kaplan, D., Christiaen, D., and Arad, S. M., Chelating properties of extracellular polysaccharides fromChlorella spp. Appl. envir. Microbiol.53 (1987) 2953–2956.

    CAS  Google Scholar 

  57. Ketchum, P. A., Johnson, D., and Taylor, R. C., Reactions of molybdenum with nitrate and naturally produced phenolates. Adv. Chem. Ser. (Bio-inorg Chem)2 (1977) 408–420.

    Google Scholar 

  58. Khailov, K. M., The formation of organometallic complexes with the participation of extracellular metabolites of marine algae. Dokl. Akad. SSSR., Biol. Sci.155 (1964) 237.

    Google Scholar 

  59. Kim, J. I., Chemical behaviour of transuranic elements in natural aquatic systems, in: Handbook on the Physics and Chemistry of the Actinides, pp. 413–455. Eds A. J. Freeman and C. Keller. North Holland, Amsterdam 1986.

    Google Scholar 

  60. Klapcinska, B., and Chmielowski, J., Binding of Germanium toPseudomonas putida cells. Appl. envir. Microbiol.51 (1986) 1144–1147.

    CAS  Google Scholar 

  61. Korobushkina, E. D., Mineev, G. G., and Praded, G. P., Mechanism of the microbiological process of dissolution of gold. Microbiologiya45 (1976) 535–538.

    CAS  Google Scholar 

  62. Kratzer, F. H., and Vohra, P., Chelates in Nutrition. CRC Press Inc., Boca Raton 1986.

    Google Scholar 

  63. Kubota, K., Nishizono, H., Suzuki, S., and Ishii, F., A copper-binding protein in root cytoplasm ofPolygonum cuspidatum growing in a metalliferous habitat. Plt Cell Physiol.29 (1988) 1029–1033.

    CAS  Google Scholar 

  64. Luoma, S. N., and Bryan, G. W., Trace metal bioavailability: modelling chemical and biological interactions of sediment bound zinc, in: Chemical Modelling in Aqueous Systems. Am. Chem. Soc. Symp. Ser.93 (1977) 577–609.

    Google Scholar 

  65. Macaskie, L. E., Dean, A. C. R., Cheetham, A. K., Jakeman, R. J. B., and Skarnulis, A. J., Cadmium accumulation by aCitrobacter spp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J. gen. Microbiol.133 (1987) 538–544.

    Google Scholar 

  66. Mantoura, R., Dickson, A., and Riley, J. P., The complexation of metals with humic materials in natural waters. Estuar. Cstl. Mar. Sci.6 (1978) 387–408.

    CAS  Google Scholar 

  67. Means, J. L., and Alexander, C. A., The environmental biogeochemistry of chelating agents and recommendations for the disposal of chelated radioactive waste. Nucl. chem. Waste Management2 (1981) 183–196.

    CAS  Google Scholar 

  68. Means, J. L., and Crerar, D., Migration of radioactive wastes: radionuclide mobilisation by complexing agents. Science200 (1978) 1477–1480.

    CAS  PubMed  Google Scholar 

  69. Meiwes, J., Fiedler, H. P., Haag, H., Zähner, H., Konetschny-Rapp, S., and Jung, G., Isolation and characterisation of staphyloferrin A, a compound with siderophore activity fromStaphylococcus hyicus DSM 20459. FEMS Microbiol. Lett.67 (1990) 201–206.

    CAS  Google Scholar 

  70. Menke, J. R., Method of removing uranium from underground deposits. U.S. Patent 2,896,930 (1959).

  71. Metivier, H., Contribution à l'étude de l'hydrolyse du plutonium tetravalent et de sa complexation par des acides d'intérêt biologique. Thèse, l'Université Paris VI, 1973.

  72. Miekeley, N., and Kuchler, I. L., Interactions between thorium and humic compounds in surface waters. Inorgan. chim. Acta140 (1987) 315–319.

    CAS  Google Scholar 

  73. Moody, M. D., Microorganisms and iron limitation. Bioscience36 (1986) 618–623.

    CAS  Google Scholar 

  74. Morel, F. M., Principles of Aquatic Chemistry, pp. 237–311. Wiley Interscience, New York 1983.

    Google Scholar 

  75. Mullen, M. D., Wolf, D. C., Ferris, F. G., Beveridge, T. J., Flemming, C. A., and Bailey, G. W., Bacterial sorption of heavy metals. Appl. Envir. Microbiol.55 (1989) 3143–3149.

    CAS  Google Scholar 

  76. Nash, K., and Choppin, G., Interaction of humic and fulvic acids with Th(IV). J. inorg. nucl. Chem.42 (1980) 1045–1050.

    CAS  Google Scholar 

  77. Nash, K., Sherman, F., Fiedman, A. M., and Sullivan, J. C., Redox behaviour, complexing and adsorption of hexavalent actinides by humic acid and selected clays. Envir. Sci. Technol.15 (1981) 834–837.

    CAS  Google Scholar 

  78. Neilands, J. B., Siderophores, in: ISI Atlas of Science: Biochemistry, pp. 53–56. Philadelphia, PA 1988.

  79. Neilands, J. B., Microbiol iron compounds. A. Rev. Biochem.50 (1981) 715–731.

    CAS  Google Scholar 

  80. Neilands, J. B., Siderophores, in: Advances in Inorganie Biochemistry, vol. 5, pp. 137–166. Eds L. Eichhorn and L. G. Marzilli. Elsievier, North Holland, Amsterdam 1983.

    Google Scholar 

  81. Neubecker, T. A., and Allen, H. E., The measurement of complexation capacity and conditional stability constants for ligands in natural waters. Water Res.17 (1983) 1–14.

    CAS  Google Scholar 

  82. Olsen, R. A., Clark, R. B., and Bennett, J. H., The enhancement of soil fertility by plant roots. Am. Sci.69 (1981) 378–383.

    CAS  Google Scholar 

  83. Petterson, A., Kunst, L., Bergman, B., and Roomans, G., Accumulation of aluminium byAbnabaena cylindrica into polyphosphate granules and cell walls an X-ray energy dispersive microanalysis study. J. gen. Microbiol.131 (1985) 2545–2548.

    Google Scholar 

  84. Penrose, W. R., Metta, D. N., Hylko, T. M., and Rinckel, L. A., The reduction of Pu V by aquatic sediments. J. envir. Radioat.5 (1987) 169–184.

    CAS  Google Scholar 

  85. Perry, R. D., and Silver, S., Cadmium and manganese transport inStaphylococcus aureus. J. Bact.150 (1982) 973–976.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Powell, P. E., Cline, G. R., Reid, C. P. P., Saniszlo, P. J., Occurrence of hydroxamate siderophore iron chelators in soils. Nature (London)287 (1980) 833–834.

    CAS  Google Scholar 

  87. Premuzic, E. T., Francis, A. J., Lin, M., and Schubert, J., Induced formation of chelating agents byPseudomonas aeruginosa grown in the presence of thorium and uranium. Archs envir. Contam. Toxicol.14 (1985) 759–768.

    CAS  Google Scholar 

  88. Ramamoorthy, S., and Kushner, D. J., Binding of mercuric and other heavy metal ions by microbial growth media. Microb. Ecol.2 (1975) 162–176.

    CAS  PubMed  Google Scholar 

  89. Raspor, B., Nurnberg, H. W., Valenta, P., and Branica, M., Significance of dissolved humic substances for heavy metal speciation in natural waters. Devl Biogeochem.1 (1984) 317–328.

    Google Scholar 

  90. Rayner, M. H., and Sadler, P. J., Cadmium accumulation and resistance mechanisms in bacteria, in: Metal-Microbe Interactions, SGM Special Publication 26, pp. 39–49. Eds R. K. Poole and G. M. Gadd. IRL Press, Oxford 1989.

    Google Scholar 

  91. Rogers, H. J., Synge, C., and Woods, V. E., Anti bacterial effect of scandium and indium complexes of enterochelin onKlebsiella pneumoniae. Antimicrob. Agents Chemother.18 (1980) 63–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rossotti, J. C., and Rossotti, H., The Determination of Stability Constants. McGraw Hill, New York 1961.

    Google Scholar 

  93. Sanchez A. L., Chemical speciation and adsorption behaviour of plutonium in natural waters. Ph. D. Dissertation, University of Washington, Seattle, Washington 1983.

    Google Scholar 

  94. Schlegel, H. G., General Microbiology, Cambridge University Press, Cambridge 1987.

    Google Scholar 

  95. Schnitzer, M., Reactions of humic substances with metals and minerals, in: Mineral Exploration: Biological Systems and Organic Matter, pp. 408–427. Eds D. Carlisle, W. L. Berry, I. R. Kaplan and J. R. Watterson. Prentice-Hall, Englewood Cliffs, N.J. 1986.

    Google Scholar 

  96. Schnitzer, M., and Khan, S. U., Humic Substances in the Environment. Marcel Dekker, New York 1972.

    Google Scholar 

  97. Schreiber, D. R., Gordon, A. S., and Milero, F. J., The toxicity of copper to the marine bacteriumVibrio alginolyticus. Can. J. Microbiol.31 (1985) 83–87.

    CAS  Google Scholar 

  98. Shaikh, Z., The low molecular weight cadmium-, mercury-, and zinc-binding proteins (Metallothioneins): biosynthesis, metabolism and possible role in metal toxicity, in: Metallothionein, Proceedings of Metallothionein and Other Low Molecular Weight Metal-binding Proteins, pp. 331–337, Birkhäuser, Basel 1979.

    Google Scholar 

  99. Shiio, I., and Ujigawa, T. K., Regulation of phosphoenol pyruvate carboxylase EC-4.1.1.31 by synergistic action of aspartate and 2 oxo glutarate. Agric. Biol. Chem.43 (1980) 2479–2486.

    Google Scholar 

  100. Shapiro, J., Effect of yellow organic acids on iron and other metals in water. J. Am. Water Works Ass.56 (1964) 1062–1082.

    CAS  Google Scholar 

  101. Shuman, M. S., and Cromer, J. L., Copper association with aquatic fulvic and humic acids. Estimation of conditional formation constants with a titrimetric anodic stripping voltammetry procedure. Envir. Sci. Technol.13 (1979) 543–545.

    CAS  Google Scholar 

  102. Sibley, T. H., Clayton, J. R., Wurtz, E. A., Sanchez, A. L., and Alberts, J. J., Effects of dissolved organic compounds on the adsorption of transuranic elements. Devl Biogeochem.1 (1984) 289–300.

    Google Scholar 

  103. Snow, G. A., Mycobactins: Iron chelating growth factors from Mycobacteria. Bact. Rev.34 (1970) 99–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sondergard, M., and Schierup, H.-H., Release of extracellular organic carbon during a diatom bloom in Lake: Molecular weight fractionation. Freshwater Biol.12 (1982) 313–320.

    Google Scholar 

  105. Sposito, G., The chemical forms of trace metals in soil, in: Applied Environmental Geochemistry, pp. 123–170. Ed. I. Thornton. Academic Press, London 1983.

    Google Scholar 

  106. Strandberg, G. W., Shumate, S. E., and Parrott, J. R., Microbial cells as biosorbents for heavy metals: accumulation of uranium bySaccharomycese cerevisiae andPseudomonas aeruginosa. Appl. envir. Microbiol.41 (1981) 237–245.

    CAS  Google Scholar 

  107. Summers, A. O., and Silver, S., Microbial transformations of metals. A. Rev. Microbiol.32 (1978) 637–672.

    CAS  Google Scholar 

  108. Sunda, W., and Guillard, R., The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. mar. Res.34 (1976) 511–529.

    CAS  Google Scholar 

  109. Thanabalasingam, P., and Pickering, W. F., The sorption of mercury-II by humic acids. Envir. Pollut. Ser. B., Chem. Phys.9 (1985) 267–280.

    CAS  Google Scholar 

  110. Tynecka, Z., Gos, Z., and Zajic, J., Energy-dependent efflux of cadmium coded by a plasmid resistance determinant inStaphylococcus aureus. J. Bact.147 (1981) 313–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Vangenechten, J. H. D., Chughtai, N., Bierkens, J., and Vanderborght, O., Similarity of Am241 and Fe59 speciation in selected freshwaters and their adsorption on Crayfish exoskeleton. J. envir. Radioact.5 (1987) 275–286.

    CAS  Google Scholar 

  112. Wallace, G. T., Seibert, D. L., Holzknecht, S. M., and Thomas, W. H., The biogeochemical fate and toxicity of mercury in controlled experimental ecosystems. Estuar. Cstl. Shelf Sci.15 (1982) 151–182.

    CAS  Google Scholar 

  113. Wirth, R., Taylor, D. M., and Duffield, J., Identification of transferrin as the principal neptunium binding protein in the blood serum of rats. Int. J. nucl. Med. Biol.12 (1985) 327–330.

    CAS  PubMed  Google Scholar 

  114. Wood, P. T. S., Chau, Y. K., and Lucon, P. L., Methylation of lead in the environment. Nature253 (1975) 263–264.

    Google Scholar 

  115. Wood, J. M., and Wang, H. K., Microbial resistance to heavy metals. Envir. Sci. Technol.17 (1983) 582–590.

    Google Scholar 

  116. Yamamoto, M., and Sakanoue, M., Interaction of humic acids and americium III in aqueous solution. J. Radiat. Res.23 (1982) 261–271.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birch, L., Bachofen, R. Complexing agents from microorganisms. Experientia 46, 827–834 (1990). https://doi.org/10.1007/BF01935533

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935533

Key words

Navigation