Skip to main content
Log in

Cardiac cellular electrophysiology: past and present

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The time-course of the cardiac action potential can be accounted for in terms of ionic currents crossing the cell membranes. Depolarizing current is carried by Na+ or Ca2+ entering the cells, repolarizing current by K+ leaving the cells. Membrane permeability for the passive movement of these ions is thought to be voltage-dependent as well as time-dependent. Net transfer of charge may also result from active transport, 2 Na+ out against 1 K+ in; or coupled exchange, 3 or 4 Na+ in against 1 Ca2+ out. This review follows the path by which present-day knowledge has been reached. It also gives a few examples to illustrate that electrophysiology has provided concepts useful to clinical cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Bassingthwaighte, J.B., Fry, C.H., and McGuigan, J.A.S., Relationship betwee internal calcium and outward current in mammalian ventricular muscle; a mechanism for the control of the action potential duration? J. Physiol.262 (1976) 15–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baumgarten, C.M., and Fozzard, H.A., Intracellular chloride activity in mammalian ventricular muscle. Am. J. Physiol.241 (1981) C121-C129.

    Article  CAS  PubMed  Google Scholar 

  3. Beeler, G.W., and McGuigan, J.A.S., Voltage clamping of multicellular myocardial preparations: capabilities and limitations of existing methods. Prog. Biophys. molec. Biol.34 (1978) 219–254.

    Article  CAS  Google Scholar 

  4. Beeler, G.W., and Reuter, H., Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol.268 (1977) 177–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bennett, P.B., McKinney, L.C., Kass, R.S., and Begenisich, T., Delayed rectification in the calf cardiac Purkinje fibre. Evidence for multiple state kinetics. biophys. J.48 (1985) 553–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bernstein, J. Elektrobiologie. Vieweg, Braunschweig 1912.

    Book  Google Scholar 

  7. Bishop, S.P., and Drummond, J.L., Suriace morphology and cell size measurement of isolated rat cardiac myocytes. J. molec. cell. Cardiol.11 (1979) 423–433.

    Article  CAS  Google Scholar 

  8. Blaustein, M.P., and Hodgkin, A.L., The effect of cyanide on the efflux of calcium from squid axons. J. Physiol.200 (1969) 497–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bleeker, W.K., Mackaay, A.J.C., Masson-Pévet, M., Bouman, L.N., and Becker, A.E., Functional and morphological organization of the rabbit sinus node. Circ. Res.46 (1980) 11–22.

    Article  CAS  PubMed  Google Scholar 

  10. Blinks, J.R., Wier, W.G., Hess, P., and Prendergast, F.G., Measurement of Ca2+ concentrations in living cells. Progr. Biophys. molec. Biol.40 (1982) 1–114.

    Article  CAS  Google Scholar 

  11. Brady, A.J., and Woodbury, J.W., The sodium-potassium hypothesis as the basis of electrical activity in frog ventrichle. J. Physiol.154 (1960) 385–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bretschneider, H.J., Gebhard, M.M., and Pressue, C.J., Amelioration of myocardial protection by improvement of capacity and effectiveness of anaerobic glycolysis, in: Myocardial Protection for Cardiovascular Surgery p. 63–71. Ed. W. Isselhard. Pharmazeutische Verlagsgesellschaft, München 1980.

    Google Scholar 

  13. Burdon-Sanderson, J., and Page, F.J.M., On the electrical phenomena of the excitatory process in the heart of the frog and of the tortoise, as investigated photographically. J. Physiol.4 (1883) 327–338.

    Article  Google Scholar 

  14. Cachelin, A.B., de Peyer, J.E., Kokubun, S., and Reuter, H., Sodium channels in cultured cardiac cells. J. Physiol.340 (1983) 389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Callewart, G., Carmeliet, E., and Vereecke, J., Single cardiac Purkinje cells: General electrophysiology and voltage-clamp analysis of the pace-maker current. J. Physiol349 (1984) 643–661.

    Article  Google Scholar 

  16. Carmeliet, E.E., Chloride and potassium permeability in cardiac Purkinje fibres. Presses Académiques Européennes, Brussels 1961.

    Google Scholar 

  17. Clerc, L., Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol.255 (1976) 335–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coraboeuf, E., Aspects cellulaires de l'électrogenèse cardiaque chez les vertébrés. J. Physiol. Paris52 (1960) 323–417.

    CAS  PubMed  Google Scholar 

  19. Coraboeuf, E., and Otsuka, M., L'action des solutions hyposodiques sur les potentiels cellulaires de tissu cardiaque de mammiféres. C.r. Acad. Sci.243 (1956) 441–444.

    CAS  Google Scholar 

  20. Coraboeuf, E., and Weidmann, S., Potentiels d'action du muscle cardiaque obtenus à l'aide de microélectrodes intracellulaires. Présence d'une inversion de potentiel. C.r. Soc. Biol.143 (1949) 1360–1361.

    Google Scholar 

  21. Cranefield, P.F., Aronson, R.S., and Wit, A.L., Effect of verapamil on the normal action potential and on a calcium-dependent slow response of canine cardiac Purkinje fibers. Circ. Res.34 (1974) 204–213.

    Article  CAS  PubMed  Google Scholar 

  22. Cranefield, P.F., Wit, A.L., and Hoffman, B.F., Conduction of the cardiac impulse. III. Characteristics of very slow conduction. J. gen. Physiol.59 (1972) 227–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deck, K.A., Kern, R., and Trautwein, W., Voltage clamp technique in mammalian cardiac fibres. Pflügers Arch.280 (1964) 50–62.

    Article  CAS  Google Scholar 

  24. Délèze, J., Possible reasons for drop of resting potential of mamalian heart preparations during hypothermia. Circ. Res.8 (1960) 553–557.

    Article  PubMed  Google Scholar 

  25. Délèze, J., The recovery of resting potential and input resistance in sheep heart injured by knife or laser. J. Physiol.208 (1970) 547–562.

    Article  PubMed  PubMed Central  Google Scholar 

  26. De Mello, W.C., Effect of intracellular injection of calcium and strontium on cell communication in heart. J. Physiol.250 (1975) 231–245.

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Mello, W.C., Intercellular communication in cardiac muscle. Circ. Res.51 (1982) 1–9.

    Article  PubMed  Google Scholar 

  28. DiFrancesco, D., The cardiac hyperpolarizing-activated current if, Origins and developments. Prog. Biophys. molec. Biol.46 (1985) 163–183.

    Article  CAS  Google Scholar 

  29. DiFrancesco, D., and Noble, D., A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. R. Soc.B307 (1985), 353–398.

    Google Scholar 

  30. Draper, M.H., and Weidmann, S., Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol.115 (1961) 74–94.

    Article  Google Scholar 

  31. Ebihara, L., Shigeto, N., Lieberman, M., and Johnson, E.A., The initial inward current in spherical clusters of chick embryonic heart cells. J. gen. Physiol.75 (1980) 437–456.

    Article  CAS  PubMed  Google Scholar 

  32. Eisner, D.A., and Lederer, W.J., Characterization of the electrogenic sodium pump in cardiac Purkinje fibres. J. Physiol.303 (1980) 441–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ellis, D., The effects of external cations and ouabain on the intracellular sodium activity of sheep heart Purkinje fibres. J. Physiol.273 (1977) 211–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Engelmann, T.W., Über die Leitung der Erregung im Herzmuskel. Pflügers Arch.11 (1875) 465–480.

    Article  Google Scholar 

  35. Estapé-Wainwright, E., and De Mello, W.C., Cyclic nucleotides and calcium: their role in the control of cell communication in the heart. Cell Biol. int. Rep.7 (1983) 91–97.

    Article  PubMed  Google Scholar 

  36. Fleckenstein, A., Calcium Antagonism in Heart and Smooth Muscle. John Wiley and Sons, New York 1983.

    Google Scholar 

  37. Fozzard, H.A., January, C.T., and Makielski, J.C., New studies of the excitatory sodium currents in heart muscle. Circ. Res.56 (1985) 475–485.

    Article  CAS  PubMed  Google Scholar 

  38. Franciolini, F., Patch clamp technique and biophysical study of membrane channels. Experientia42 (1986) 589–594.

    Article  CAS  PubMed  Google Scholar 

  39. Gadsby, D.C., Actrvation of electrogenic Na+/K+ exchange by extracellular K+ incanine cardiac Purkinje fibres. Proc. natn. Acad. Sci.77 (1980) 4035–4039.

    Article  CAS  Google Scholar 

  40. Gettes, L.S., and Reuter, H., Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J. Physiol.240 (1974) 703–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giles, W.R., and Shibata, E.F., Voltage clamp of bull-frog cardiac pace-maker cells: a quantitative analysis of potassium currents. J. Physiol.368 (1985) 265–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gliklich, J.L., and Hoffman, B.F., Sites of action and active forms of lidocaine and some derivatives on cardiac Purkinje fibres. Circ. Res.43 (1978) 638–651.

    Article  CAS  PubMed  Google Scholar 

  43. Haas, H.G., and Kern, R., Potassium fluxes in voltage clamped Purkinje fibres. Pflügers Arch.291 (1966) 69–84.

    Article  CAS  Google Scholar 

  44. Haas, H.G., Kern, R., Einwächter, H.M., and Tarr, M., Kinetics of Na inactivation in frog atria. Pflügers Arch.323 (1971) 141–157.

    Article  CAS  PubMed  Google Scholar 

  45. Haas, H.G., Meyer, R., Einwächter, H.M., and Stockem, W., Intercellular coupling in frog heart muscle. Electrophysiological and morphological aspects. Pflügers Arch.399 (1983) 321–335.

    Article  CAS  PubMed  Google Scholar 

  46. Heilbrunn, L.V., and Wiercinski, F.J., The action of various cations on muscle protoplasm. J. cell. comp. Physiol.29 (1947) 15–32.

    Article  CAS  PubMed  Google Scholar 

  47. Heistracher, P., Mechanism of action of antifibrillatory drugs. Naunyn-Schmiedebergs Archs Pharmac.269 (1971) 199–212.

    Article  CAS  Google Scholar 

  48. Hermsmeyer, K., Angiotensin II increases electrical coupling in mammalian ventricular myocardium. Circ. Res.47 (1980) 524–529.

    Article  CAS  PubMed  Google Scholar 

  49. Hescheler, J., Pelzer, D., Trube, G., and Trautwein, W., Do organic channel blockers act from inside or outside of the cardiac cell membrane? Pflügers Arch.393 (1982) 287–291.

    Article  CAS  PubMed  Google Scholar 

  50. Hess, P., and Wier, W.G., Excitation-contraction coupling in cardiac Purkinje fibres. Effects of caffeine on the intracellular [Ca2+] transient, membrane currents, and contraction. J. gen. Physiol.83 (1984) 417–433.

    Article  CAS  PubMed  Google Scholar 

  51. Hilgemann, D.W., Extracellular calcium transients at single excitations in rabbit atrium measured with tetramethylmurexide. J. gen. Physiol87 (1986) 707–735.

    Article  CAS  PubMed  Google Scholar 

  52. Hille, B., Local anesthetic action on inactivation of the Na channel in nerve and skeletal muscle: possible mechanisms for antiarrhythmic agents, in: Biophysical Aspects of Cardiac Muscle. Ed. M. Morad. Academic Press, New York 1978.

    Google Scholar 

  53. Hiraoka, M., and Sano, T., Role of sinoatrial ring bundle in internodal conduction. Am. J. Physiol.231 (1976) 319–325.

    Article  CAS  PubMed  Google Scholar 

  54. Hodgkin, A.L., and Huxley, A.F., The dual effect of membrane active nerve fibre. J. Physiol.106 (1947) 341–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hodgkin, A.L., and Huxely, A.F., The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo. J. Physiol.116 (1952a) 497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hodgkin, A.L., and Huxley, A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol.117 (1952b) 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hodgkin, A.L., and Katz, B., The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol.108 (1949) 37–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hodgkin, A.L., and Keynes, R.D., The potassium permeability of a giant nerve fibre. J. Physiol.128 (1955) 61–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoffman, B.F., Paes de Carvalho, A., de Mello, W.C., Transmembrane potentials of single fibres of the atrio-ventricular node. Nature181 (1958) 66–67.

    Article  CAS  PubMed  Google Scholar 

  60. Hoffman, B.F., and Suckling, E.E., Effect of several cations on transmembrane potentials of cardiac muscle. Am J. Physiol.186 (1956) 317–324.

    Article  CAS  PubMed  Google Scholar 

  61. Hofmann, H., Interaction between a normoxic and a hypoxic region of guinea pig and ferret papillary muscles. Circ. Res.56 (1985) 876–883.

    Article  CAS  PubMed  Google Scholar 

  62. Hondeghem, L.M., and Katzung, B.G., Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. A. Rev. Pharmac. Toxic.24 (1984) 387–423.

    Article  CAS  Google Scholar 

  63. Horres, C.R., and Lieberman, M., Compartmental analysis of potassium efflux from growth-oriented heart cells. J. Membr. Biol.34 (1977) 331–350.

    Article  CAS  PubMed  Google Scholar 

  64. Horres, C.R., Lieberman, M., and Purdy, J.E., Growth orientation of heart cells on nylon monofilament. Determination of the volumeto-surface area ratio and intracellular potassium concentration. J. Membr. Biol.34 (1977) 313–329.

    Article  CAS  PubMed  Google Scholar 

  65. Hutter, O.F., and Noble, D., Rectifying properties of heart muscle. Nature188 (1960) 495.

    Article  CAS  PubMed  Google Scholar 

  66. Hutter, O.F., and Trautwein, W., Effect of vagal stimulation on the sinus venosus of the frog's heart. Nature176 (1955) 512–513.

    Article  CAS  PubMed  Google Scholar 

  67. Jaeger, J.M., and Gibbons, W.R., A re-examination of late outward plateau currents of cardiac Purkinje fibres. Am. J. Physiol.249 (1985a) H108-H121.

    CAS  PubMed  Google Scholar 

  68. Jaeger, J.M., and Gibbons, W.R., Slow inward current may produce many results attributed to Ix1 in cardiac Purkinje fibres. Am. J. Physiol.249 (1985b) H122-H132.

    CAS  PubMed  Google Scholar 

  69. Johnson, E.A., and Lieberman, M., Heart: Excitation or contraction. A. Rev. Physiol.33 (1971) 479–532.

    Article  CAS  Google Scholar 

  70. Kameyama, M., Electical coupling between ventricular paired cells isolated from guinea pig heart. J. Physiol.336 (1983) 345–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kass, R.S., and Tsien, R.W., Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibres. J. gen. Physiol.66 (1975) 169–192.

    Article  CAS  PubMed  Google Scholar 

  72. Kléber, A., Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ. Res.52 (1983) 442–450.

    Article  PubMed  Google Scholar 

  73. Kline, R.P., and Cohen, I., Extracellular [K+] fluctuations in voltage-clamped canine cardiac Purkinje fibres. Biophys. J.46 (1984) 663–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kline, R.P., and Morad, M., Potassium efflux in heart muscle during activity: extracellular accumulation and its implications. J. Physiol.280 (1978) 537–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kohlhardt, M., Bauer, B., Krause, H., and Fleckenstein, A., Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflügers Arch.335 (1972) 309–322.

    Article  CAS  PubMed  Google Scholar 

  76. Kokubun, S., and Irisawa, H., Effects of various intracellular Ca ion concentrations on the calcium current of guinea-pig single ventricular cells. Jap. J. Physiol.34 (1984) 599–611.

    Article  CAS  Google Scholar 

  77. Kokubun, S., Nishimura, M., Noma, A., and Irisawa, H., The spontaneous action potential of rabbit atrioventricular node cells. Jap. J. Physiol.30 (1980) 529–540.

    Article  CAS  Google Scholar 

  78. Kunze, D.L., Lacerda, A.E., Wilson, D.L., and Brown, A.M., Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels. J. gen. Physiol.86 (1985) 691–719.

    Article  CAS  PubMed  Google Scholar 

  79. Lamb, J.F., and McGuigan, J.A.S., The efflux of potassium, sodium, chloride, calcium and sulphate ions and of sorbitol and glycerol during the cardiac cycle in frog's ventricle. J. Physiol.195 (1968) 283–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, K.S., Akaike, N., and Brown, A.M., The suction pipette method for internal perfusion and voltage clamp of small excitable cells. J. Neurosci. Meth.2 (1980) 51–78.

    Article  CAS  Google Scholar 

  81. Lee, K.S., Marban E., and Tsien, R.W., Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J. Physiol.364 (1985) 395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, K.S., and Tsien, R.W., Mechanism of calcium channel blockade by verapamil, D 600, diltiazem and nitrendipine in single dialysed heart cells. Nature302 (1983) 790–794.

    Article  CAS  PubMed  Google Scholar 

  83. Lee, K.S., Weeks, T.A., Kao, R.L., Akaike, N., and Brown, A.M., Sodlum current in single heart muscle cells. Nature278 (1979) 269–271.

    Article  CAS  PubMed  Google Scholar 

  84. Lieberman, M., Sawanobori, T., Kootsey, J.M., and Johnson, E.A., A synthetic strand of cardiac muscle. Its passive electrical properties. J. gen Physiol.65 (1973) 527–550.

    Article  Google Scholar 

  85. Ling, G., and Gerard, R.W., The normal membrane potential of frog sartorius fibres. J. cell. comp. Physiol.34 (1949) 383–396.

    Article  CAS  PubMed  Google Scholar 

  86. Lippmann, M.G., Relation entre les phénomènes électriques et capillaires. C.r. Acad. Sci.76 (1873) 1407–1408.

    Google Scholar 

  87. Locke, F.S., and Rosenheim, O., Contributions to the physiology of the isolated heart. The consumption of dextrose by mammalian cardiac muscle. J. Physiol.36 (1907/08) 205–220

    Article  Google Scholar 

  88. Marmont, G., Studies on the axon membrane. I. A new method. J. cell. comp. Physiol.34 (1949) 351–382.

    Article  CAS  PubMed  Google Scholar 

  89. Matsuda, K., Hoshi, T., Kameyama, S., and Yagi, S., Effects of procaine of the membrane potential on dog's ventricle (in Japanese). J. physiol. Soc. Jap.18 (1956) 246.

    Google Scholar 

  90. McAllister, R.E., Noble, D., and Tsien, R.W., Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol.251 (1975) 1–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mendez, C., Mueller, W.J., and Urguiaga, X., Propagation of impulses across the Purkinje fibre-muscle junctions in the dog heart. Circ. Res.26 (1970) 135–150.

    Article  CAS  PubMed  Google Scholar 

  92. Myerburg, R.J., Stewart, J.W.; and Hoffman, B.F., Electrophysiological properties of the canine peripheral A-V conduction system. Circ. Res.26 (1970) 361–378.

    Article  CAS  PubMed  Google Scholar 

  93. Mullins, L.J., The generation of electic currents in cardiac fibres by Na/Ca exchange. Am. J. Physiol.236 (1979) C103-C110.

    Article  CAS  PubMed  Google Scholar 

  94. Murphy, E., Wheeler, D.M., LeFurgey, A., Jacob, R., Lobaugh, L.A., and Lieberman, M., Couple sodium-calcium transport in cultured chick heart cells. Am. J. Physiol.250 (1986) C442-C452.

    Article  CAS  PubMed  Google Scholar 

  95. Nakayama, T., Jurachi, Y., Noma, A., and Irisawa, H., Action potential and membrane currents of single pacemaker cells of the rabbit heart. Pflügers Arch.402 (1984) 248–257.

    Article  CAS  PubMed  Google Scholar 

  96. Nastuk, W.L., and Hodgkin, A.L., The electrical activity of single muscle fibres, J. cell. comp. Physiol.35 (1950) 39–73.

    Article  CAS  Google Scholar 

  97. Netter, F.H., The Ciba Collection of Medical Illustrations, Vol. 5, Heart. Ciba Pharmaceutical Company, Summit, N.J. 1979.

    Google Scholar 

  98. Neher, E., and Sakmann, B., Single channel currents recorded from membrane of denervated frog muscle fibres. Nature260 (1976) 799–802.

    Article  CAS  PubMed  Google Scholar 

  99. Niedergerke, R., and Orkand, R.K., The dual effect of calcium on the action potential of the frog's heart. J. Physiol.184 (1966) 291–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nishiye, H., The mechanism of Ca2+ action on the healing-over process in mammalian cardiac muscles: a kinetic analysis. Jap. j. Physiol27 (1977) 451–466.

    Article  CAS  Google Scholar 

  101. Noble, D., A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol.160 (1962) 317–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Noble, D., The Initiation of the Heartbeat. Clarendon Press, Oxford 1975.

    Google Scholar 

  103. Noble, D., The surprising heart: a review of recent progress in cardiac electrophysiology. J. Physiol.353 (1984) 1–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Noma, A., Morad, M., and Irisawa, H., Does the ‘pacemaker current’ generate the diastolic depolarization in the rabbit SA node cell? Pflügers Arch.397 (1983) 190–194.

    Article  CAS  PubMed  Google Scholar 

  105. Paes de Carvalho, A., Hoffman, B.F., and de Paula Carvalho, M., Two components of the cardiac action potential. I. Voltage-time course and the effect of acetylcholine on atrial and nodal cells of the rabbit heart. J. gen. Physiol.54 (1969) 607–635.

    CAS  Google Scholar 

  106. Payet, M.D., Rousseau, E., and Sauvé, R., Single-channel analysis of a potassium inward rectifier in myocytes of newborn rat heart. J. Membr. Biol.86 (1985) 79–88.

    Article  CAS  PubMed  Google Scholar 

  107. Piwnica-Worms, D., Jacob, R., Horres, C.R., and Lieberman, M., Transmembrane chloride flux in tissue-cultured chick heart cells. J. gen. Physiol.81 (1983) 731–748.

    Article  CAS  PubMed  Google Scholar 

  108. Poche, R., and Lindner, E., Untersuchungen zur Frage der Glanzstreifen des Herzmuskelgewebes beim Warmblüter und beim Kaltblüter. Z. Zellforsch.43 (1955) 104–120.

    Article  CAS  PubMed  Google Scholar 

  109. Polimeni, P.I., and Page, E., Chloride distribution and exchange in rat ventricle. Am. J. Physiol.238 (1980) C169-C176.

    Article  CAS  PubMed  Google Scholar 

  110. Pressler, M.L., Cable analysis in quiescent and active sheep Purkinje fibres. L. Physiol.352 (1884) 739–757.

    Article  Google Scholar 

  111. Purkinje, J.E., Mikroskopisch-neurologische Beobachtungen. Arch. Anat. Physiol. (1845) 281–295.

  112. Reber, W.R., and Weingart, R., Ungulate cardiac Purkinje fibres: the influence of intracellular pH on the electrical cell-to-cell coupling. J. Physiol.328 (1882) 87–104.

    Article  Google Scholar 

  113. Reuter, H., Strom-Spannungsbeziehungen von Purkinje-Fasern bei verschiedenen extracellulären Calcium-Konzentrationen und unter Adrenalineiwirkung. Pflügers Arch.287 (1866) 357–367.

    Article  Google Scholar 

  114. Reuter, H., and Scholz, H., The regulation of the calcium conductance of cardiac muscle by adrenaline. J. Physiol.264 (1977) 49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Reuter, H., and Seitz, N., The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol.195 (1968) 451–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Reuter, H., Stevens, C.F., Tsien, R.W., and Yellen, G., Properties of single calcium channels in cardiac cell culture. Nature297 (1982) 501–504.

    Article  CAS  PubMed  Google Scholar 

  117. Ringer, S., A further contribution regarding the influence of the different constituents of the blood on the contraction of the hear. J. Physiol.4 (1883) 29–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rougier, O., Vassort, G., Garnier, D., Gargouïl, Y.-M., and Coraboeuf, E., Existence and role of a slow inward current during the frog atrial action potential. Pflügers Arch.308 (1969) 91–110.

    Article  CAS  PubMed  Google Scholar 

  119. Sano, T., and Savanobori, T., Effectrical properties of the cells at the Purkinje fibre-myocardial cell region of the mammalian heart J. Electrocardiol.5 (1972) 173–183.

    Article  CAS  PubMed  Google Scholar 

  120. Sakmann, B., and Neher, E., Single Channel Recording. Plenum Press, New York 1983.

    Google Scholar 

  121. Sakmann, B., and Trube, G., Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J. Physiol.347 (1984) 641–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schaefer, H., Elektrophysiologie, Vol. 2: Spezielle Elektrophysiologie. Deuticke, Vienna 1942.

    Google Scholar 

  123. Schütz, E., Elektrophysiologie des Herzens bei einphasischer Ableitung. Erg. Physiol.38 (1936) 493–620.

    Article  Google Scholar 

  124. Sheu, S.-S., and Fozzard, H.A., Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J. gen. Physiol.80 (1982) 325–351.

    Article  CAS  PubMed  Google Scholar 

  125. Sheu, S.-S., Korth, M., Lathrop, D.A., and Fozzard, H.A., Intra- and extracellular K+ and Na+ activities and resting membrane potential in sheep cardiac Purkinje strands. Circ. Res.47 (1980) 692–700.

    Article  CAS  PubMed  Google Scholar 

  126. Sjöstrand, U., Analysis of ionic tracer movements during single heart cycles. Acta physiol scand.61 suppl. 227 (1964).

  127. Spach, M.S., and Kootsey, J.M., Thenature of electrical propagation in cardiac muscle. Am. J. Physiol.244 (1983) H3-H22.

    CAS  PubMed  Google Scholar 

  128. Taniguchi, J., Noma, A., and Irisawa, H., Modification of the cardiac action potential by intracellular injection of adenosine triphosphate and related substances in guinea pig single ventricular cells. Circ. Res.53 (1983) 131–139.

    Article  CAS  PubMed  Google Scholar 

  129. Thomas, R.C., Intracellular pH of snail neurones measured with a new pH-sensitive glass micro-electrode. J. Physiol.238 (1974) 159–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tsien, R.Y., and Rink, T.J., Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim. biophys. Acta599 (1980) 623–638.

    Article  CAS  PubMed  Google Scholar 

  131. Unwin, P.N.T., and Zampighi, G., Structure of the junction between communicating cells. Nature283 (1980) 545–549.

    Article  CAS  PubMed  Google Scholar 

  132. Vassalle, M., and Hoffman, B.F., The spred of sinus activation during potassium administration. Circ. Res.17 (1965) 285–295.

    Article  CAS  PubMed  Google Scholar 

  133. Vaughan-Jones, R.D., Regulation of chloride in quiescent sheepheart Purkinje fibres studied using intracellular chloride and pHsensitive micro-electrodes. J. Physiol.295 (1979) 111–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vereecke, J., Isenberg, G., and Carmeliet, E., K efflux through inward rectifying K channels in voltage clamped Purkinje fibres. Pflügers Arch.384 (1980) 207–217.

    Article  CAS  PubMed  Google Scholar 

  135. Weidmann, S., Effects of current flow on the membrane potential of cardiac muscle. J. Physiol.115 (1951) 227–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Weidmann, S. The electrical constants of Purkinje fibres. J. Physiol.118 (1952) 348–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Weidmann, S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol.127 (1955) 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weidmann, S., Shortening of the cardiac action potential due to a brief injection of KCl following the onset of activity. J. Physiol.132 (1956) 157–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Weidmann, S., The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J. Physiol.187 (1966) 232–342.

    Article  Google Scholar 

  140. Weidmann, S., and Wyss, F., Glelchzeiliger Nachweis der 4 Aktionssubstanz mit dem Polarographen und am Froschherzen. Experientia1 (1945) 62–63.

    Article  CAS  Google Scholar 

  141. Weingart, R., The actions of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle. J. Physiol.264 (1977) 341–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Weingart, R., Electrical properties of the nexal membrane studied in rat ventricular cell pairs. J. Physiol.370 (1986) 267–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Weingart, R., and Hess, P., Free calcium in sheep cardiac tissue and frog skeletal muscle measured with Ca2+-selective microelectrodes. Pflügers Arch.402 (1984) 1–9.

    Article  CAS  PubMed  Google Scholar 

  144. Wheeler, D. M., Horres, C.R., and Lieberman, M., Sodium tracer kinetics and trasmembrane flux in tissue-cultured chick heart cells. Am. J. Physiol.243 (1982) C169-C176.

    Article  CAS  PubMed  Google Scholar 

  145. Wier, W.G., and Hess, P., Excitation-contraction coupling in cardiac Purkinje fibres. Effects of cardiotonic steroids on the intracellular [Ca2+] transient, membrane potential, and contraction. J. gen. Physiol.83 (1984) 395–415.

    Article  CAS  PubMed  Google Scholar 

  146. Wilde, W.S., O'Brien, J.M., and Bay, I., Time relation between potassium (K42) outflux, action potential, and contraction phase of heart muscle as revealed by the effluogram, Proc. Geneva Conf. peaceful uses atomic energy. United Nations, Geneva 1955.

    Google Scholar 

  147. Wit, A.L., Cranefield, P.F., and Hoffman, B.F., Slow conduction and reentry in the ventricular conducting system. II. Single and sustained circus movement in networks of canine and bovine Purkinje fibres. Circ. Res.30 (1972) 11–22.

    Article  CAS  PubMed  Google Scholar 

  148. Wojtczak, J., Contractures and increase in internal longitudinal resistance of cow ventricular muscle induced by hypoxia. Circ. Res.44 (1979) 88–95.

    Article  CAS  PubMed  Google Scholar 

  149. woodbury, L.A., Woodbury, J.W., and Hecht, H.H., Membrane resting and action potentials from single cardiac muscle fibres. Circulation1 (1950) 264–266.

    Article  CAS  PubMed  Google Scholar 

  150. Ypey, D.L., Clapham, D.E., and DeHaan, R.L., Development of electrical coupling and action potential synchrony between paired aggregates of embryonic heart cells. J. Membr. Biol.51 (1979) 75–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidmann, S. Cardiac cellular electrophysiology: past and present. Experientia 43, 133–146 (1987). https://doi.org/10.1007/BF01942831

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01942831

Key words

Navigation